Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Rechnen: Fragil und doch fehlerfrei

13.06.2014

In enger Zusammenarbeit haben spanische und österreichische Physiker im Labor ein Quantenbit in verschränkten Zuständen mehrerer Teilchen kodiert und damit erstmals einfache Rechnungen durchgeführt. Das siebenteilige Quantenregister könnte als Grundbaustein für einen Quantencomputer dienen, der beliebige Fehler korrigieren kann. Die Forscher berichten darüber in der Fachzeitschrift Science.

Auch Computer sind fehleranfällig. Schon kleine Störungen können gespeicherte Informationen verändern und das Rechenergebnis verfälschen. Deshalb nutzen Computer spezielle Verfahren, mit denen Fehler laufend entdeckt und korrigiert werden können.


Das Modell aus sieben Atomen zur Speicherung eines logischen Quantenbits kann als Grundbaustein für sehr viel größere Quantensysteme dienen. Je größer das Gitter wird, umso robuster wird es. IQOQI/Harald Ritsch

Auch ein zukünftiger Quantencomputer benötigt eine Fehlerkorrektur: „Quantenphysikalische Phänomene sind sehr fragil und störungsanfällig, Fehler können sich rasch ausbreiten und einen Rechner aus dem Tritt bringen“, sagt Thomas Monz aus der Forschungsgruppe um Rainer Blatt vom Institut für Experimentalphysik der Universität Innsbruck.

Gemeinsam mit Markus Müller und Miguel Ángel Martín-Delgado vom Institut für Theoretische Physik der Complutense-Universität in Madrid haben die Innsbrucker Physiker ein neues Fehlerkorrektur-Verfahren entwickelt und im Labor erprobt. „Ein Quantenbit ist nicht nur sehr komplex und kann nicht einfach kopiert werden, sondern darüber hinaus sind Fehler in der Quantenwelt vielfältiger und schwieriger zu bekämpfen als in heutigen Computern,“ betont Monz.

„Um allgemeine Fehler in einem Quantencomputer erkennen und korrigieren zu können, bedarf es sehr ausgefeilter, sogenannter Quanten-Fehlerkorrekturcodes." Der im aktuellen Experiment verwendete topologische Code wurde von der Gruppe um Martín-Delgado in Madrid vorgeschlagen und ordnet die Teilchen auf einem zweidimensionalen Gitter an, wo sie mit ihren jeweiligen Nachbarn wechselwirken können.

Quantenbit aufgeteilt

Im Labor an der Universität Innsbruck nutzen die Physiker eine Ionenfalle, in der sieben Kalziumatome gefangen, mit Hilfe von Lasern nahe an den absoluten Nullpunkt abgekühlt und präzise kontrolliert werden können. Die Forscher speichern die fragilen Quantenzustände des logischen Quantenbits in den verschränkten Zuständen dieser Teilchen, wobei der Quanten-Fehlerkorrekturcode das Programm hierfür liefert.

„Das logische Quantenbit in diese sieben physikalischen Quantenbits zu kodieren, war eine wirkliche experimentelle Herausforderung“, erzählt Daniel Nigg aus der Forschungsgruppe von Rainer Blatt. Die Physiker taten dies in drei Schritten, wobei mit einer komplexen Sequenz von Laserpulsen jeweils vier benachbarte Quantenbits miteinander verschränkt wurden.

„Es ist hier zum ersten Mal gelungen, sieben Atome ganz gezielt für die Speicherung eines einzigen Quantenbits zu verwenden“, ist Markus Müller begeistert, der 2011 von Innsbruck an die Complutense-Universität in Madrid wechselte. „Mit den auf diese Weise verschränkten Atomen erhält man genügend Informationen für eine anschließende Fehlerkorrektur und mögliche Rechenoperationen.“

Fehlerfreies Rechnen

In einem weiteren Schritt überprüften die Physiker die Möglichkeit, verschiedene Arten von Fehlern zu erkennen und zu korrigieren. „Wir konnten zeigen, dass wir alle in einem solchen Quantensystem möglichen Fehler unabhängig voneinander für jedes Teilchen einzeln erkennen und korrigieren können“, erzählt Daniel Nigg. „Dazu benötigen wir nur Information über Korrelationen zwischen den Teilchen, aber keine Messungen der einzelnen Teilchen“, erklärt Niggs Kollege Esteban Martinez.

Die Physiker konnten aber nicht nur einzelne Fehler zuverlässig detektieren. Es gelang ihnen erstmals auch, einzelne Rechenschritte und sogar längere Rechenoperationen auf einem so kodierten Quantenbit durchzuführen. Sobald die Hürde der aufwändigen Kodierung einmal überwunden ist, sind für einzelne Rechenschritte jeweils nur noch einfache Ein-Qubit-Operationen notwendig.

„Wir können hier mit diesem Quantencode erstmals einfache Quantenrechnungen durchführen und gleichzeitig alle möglichen Fehler korrigieren“, beschreibt Thomas Monz diesen bedeutenden Durchbruch auf dem Weg zu einem verlässlichen, fehlertoleranten Quantenrechner.

Grundlage für weitere Entwicklungen

Der von den spanischen und österreichischen Physikern gemeinsam entwickelte Ansatz bildet eine vielversprechende Grundlage für weitere Entwicklungen. „Das Modell aus sieben Atomen zur Speicherung eines logischen Quantenbits kann als Grundbaustein für sehr viel größere Quantensysteme dienen“, sagt Theoretiker Müller. „Je größer das Gitter wird, umso robuster wird es. Am Ende könnte ein Quantenrechner stehen, der beliebig lange rechnen kann, ohne dass Fehler ihn aus dem Tritt bringen.“

Das aktuelle Experiment eröffnet aber nicht nur Perspektiven für weitere technologische Entwicklungen. „Hier tun sich auch ganz neue Fragen auf, mit welchen Methoden solche großen logischen Quantenbits überhaupt charakterisiert werden können“, blickt Rainer Blatt bereits in die Zukunft. „Auch wollen wir gemeinsam die verwendeten Quantencodes weiterentwickeln und für noch umfangreichere Rechenoperationen optimieren“, ergänzt Martín-Delgado.

Finanziell unterstützt wurden die Forscher unter anderem vom spanischen Wissenschaftsministerium, dem österreichischen Wissenschaftsfonds FWF, der US-Regierung, der Europäischen Kommission und der Tiroler Industrie.

Publikation: Quantum Computations on a Topologically Encoded Qubit. Daniel Nigg, Markus Müller, Esteban A. Martinez, Philipp Schindler, Markus Hennrich, Thomas Monz, Miguel Angel Martin-Delgado, and Rainer Blatt. Science Express am 12. Juni 2014 DOI: 10.1126/science.1253742 (arXiv:1403.5426)

Rückfragehinweis:
Thomas Monz
Institut für Experimentalphysik
Universität Innsbruck
Telefon: +43 512 507 52452
E-Mail: thomas.monz@uibk.ac.at

Markus Müller
Departamento de Fisica Teórica I
Universidad Complutense Madrid
Telefon: +34 91 394 4569
E-Mail: mueller@ucm.es

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1126/science.1253742 - Quantum Computations on a Topologically Encoded Qubit. Daniel Nigg, Markus Müller, Esteban A. Martinez, Philipp Schindler, Markus Hennrich, Thomas Monz, Miguel Angel Martin-Delgado, and Rainer Blatt. Science Express am 12. Juni 2014
http://www.quantumoptics.at - Quantum Optics and Spectroscopy Group

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie