Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Rechnen: Fragil und doch fehlerfrei

13.06.2014

In enger Zusammenarbeit haben spanische und österreichische Physiker im Labor ein Quantenbit in verschränkten Zuständen mehrerer Teilchen kodiert und damit erstmals einfache Rechnungen durchgeführt. Das siebenteilige Quantenregister könnte als Grundbaustein für einen Quantencomputer dienen, der beliebige Fehler korrigieren kann. Die Forscher berichten darüber in der Fachzeitschrift Science.

Auch Computer sind fehleranfällig. Schon kleine Störungen können gespeicherte Informationen verändern und das Rechenergebnis verfälschen. Deshalb nutzen Computer spezielle Verfahren, mit denen Fehler laufend entdeckt und korrigiert werden können.


Das Modell aus sieben Atomen zur Speicherung eines logischen Quantenbits kann als Grundbaustein für sehr viel größere Quantensysteme dienen. Je größer das Gitter wird, umso robuster wird es. IQOQI/Harald Ritsch

Auch ein zukünftiger Quantencomputer benötigt eine Fehlerkorrektur: „Quantenphysikalische Phänomene sind sehr fragil und störungsanfällig, Fehler können sich rasch ausbreiten und einen Rechner aus dem Tritt bringen“, sagt Thomas Monz aus der Forschungsgruppe um Rainer Blatt vom Institut für Experimentalphysik der Universität Innsbruck.

Gemeinsam mit Markus Müller und Miguel Ángel Martín-Delgado vom Institut für Theoretische Physik der Complutense-Universität in Madrid haben die Innsbrucker Physiker ein neues Fehlerkorrektur-Verfahren entwickelt und im Labor erprobt. „Ein Quantenbit ist nicht nur sehr komplex und kann nicht einfach kopiert werden, sondern darüber hinaus sind Fehler in der Quantenwelt vielfältiger und schwieriger zu bekämpfen als in heutigen Computern,“ betont Monz.

„Um allgemeine Fehler in einem Quantencomputer erkennen und korrigieren zu können, bedarf es sehr ausgefeilter, sogenannter Quanten-Fehlerkorrekturcodes." Der im aktuellen Experiment verwendete topologische Code wurde von der Gruppe um Martín-Delgado in Madrid vorgeschlagen und ordnet die Teilchen auf einem zweidimensionalen Gitter an, wo sie mit ihren jeweiligen Nachbarn wechselwirken können.

Quantenbit aufgeteilt

Im Labor an der Universität Innsbruck nutzen die Physiker eine Ionenfalle, in der sieben Kalziumatome gefangen, mit Hilfe von Lasern nahe an den absoluten Nullpunkt abgekühlt und präzise kontrolliert werden können. Die Forscher speichern die fragilen Quantenzustände des logischen Quantenbits in den verschränkten Zuständen dieser Teilchen, wobei der Quanten-Fehlerkorrekturcode das Programm hierfür liefert.

„Das logische Quantenbit in diese sieben physikalischen Quantenbits zu kodieren, war eine wirkliche experimentelle Herausforderung“, erzählt Daniel Nigg aus der Forschungsgruppe von Rainer Blatt. Die Physiker taten dies in drei Schritten, wobei mit einer komplexen Sequenz von Laserpulsen jeweils vier benachbarte Quantenbits miteinander verschränkt wurden.

„Es ist hier zum ersten Mal gelungen, sieben Atome ganz gezielt für die Speicherung eines einzigen Quantenbits zu verwenden“, ist Markus Müller begeistert, der 2011 von Innsbruck an die Complutense-Universität in Madrid wechselte. „Mit den auf diese Weise verschränkten Atomen erhält man genügend Informationen für eine anschließende Fehlerkorrektur und mögliche Rechenoperationen.“

Fehlerfreies Rechnen

In einem weiteren Schritt überprüften die Physiker die Möglichkeit, verschiedene Arten von Fehlern zu erkennen und zu korrigieren. „Wir konnten zeigen, dass wir alle in einem solchen Quantensystem möglichen Fehler unabhängig voneinander für jedes Teilchen einzeln erkennen und korrigieren können“, erzählt Daniel Nigg. „Dazu benötigen wir nur Information über Korrelationen zwischen den Teilchen, aber keine Messungen der einzelnen Teilchen“, erklärt Niggs Kollege Esteban Martinez.

Die Physiker konnten aber nicht nur einzelne Fehler zuverlässig detektieren. Es gelang ihnen erstmals auch, einzelne Rechenschritte und sogar längere Rechenoperationen auf einem so kodierten Quantenbit durchzuführen. Sobald die Hürde der aufwändigen Kodierung einmal überwunden ist, sind für einzelne Rechenschritte jeweils nur noch einfache Ein-Qubit-Operationen notwendig.

„Wir können hier mit diesem Quantencode erstmals einfache Quantenrechnungen durchführen und gleichzeitig alle möglichen Fehler korrigieren“, beschreibt Thomas Monz diesen bedeutenden Durchbruch auf dem Weg zu einem verlässlichen, fehlertoleranten Quantenrechner.

Grundlage für weitere Entwicklungen

Der von den spanischen und österreichischen Physikern gemeinsam entwickelte Ansatz bildet eine vielversprechende Grundlage für weitere Entwicklungen. „Das Modell aus sieben Atomen zur Speicherung eines logischen Quantenbits kann als Grundbaustein für sehr viel größere Quantensysteme dienen“, sagt Theoretiker Müller. „Je größer das Gitter wird, umso robuster wird es. Am Ende könnte ein Quantenrechner stehen, der beliebig lange rechnen kann, ohne dass Fehler ihn aus dem Tritt bringen.“

Das aktuelle Experiment eröffnet aber nicht nur Perspektiven für weitere technologische Entwicklungen. „Hier tun sich auch ganz neue Fragen auf, mit welchen Methoden solche großen logischen Quantenbits überhaupt charakterisiert werden können“, blickt Rainer Blatt bereits in die Zukunft. „Auch wollen wir gemeinsam die verwendeten Quantencodes weiterentwickeln und für noch umfangreichere Rechenoperationen optimieren“, ergänzt Martín-Delgado.

Finanziell unterstützt wurden die Forscher unter anderem vom spanischen Wissenschaftsministerium, dem österreichischen Wissenschaftsfonds FWF, der US-Regierung, der Europäischen Kommission und der Tiroler Industrie.

Publikation: Quantum Computations on a Topologically Encoded Qubit. Daniel Nigg, Markus Müller, Esteban A. Martinez, Philipp Schindler, Markus Hennrich, Thomas Monz, Miguel Angel Martin-Delgado, and Rainer Blatt. Science Express am 12. Juni 2014 DOI: 10.1126/science.1253742 (arXiv:1403.5426)

Rückfragehinweis:
Thomas Monz
Institut für Experimentalphysik
Universität Innsbruck
Telefon: +43 512 507 52452
E-Mail: thomas.monz@uibk.ac.at

Markus Müller
Departamento de Fisica Teórica I
Universidad Complutense Madrid
Telefon: +34 91 394 4569
E-Mail: mueller@ucm.es

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1126/science.1253742 - Quantum Computations on a Topologically Encoded Qubit. Daniel Nigg, Markus Müller, Esteban A. Martinez, Philipp Schindler, Markus Hennrich, Thomas Monz, Miguel Angel Martin-Delgado, and Rainer Blatt. Science Express am 12. Juni 2014
http://www.quantumoptics.at - Quantum Optics and Spectroscopy Group

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte