Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Jonglieren mit freien Elektronen

19.08.2016

Göttinger Wissenschaftler manipulieren Quantenzustand freier Elektronen mit Lichtfeldern

In der klassischen Physik kann ein Elektron nur eine einzige, bestimmte Geschwindigkeit annehmen. Quantenmechanisch ist es jedoch möglich, dass es sich in einer Überlagerung verschiedener Geschwindigkeiten befindet.


Gemessene Verteilungen der Elektronengeschwindigkeiten im Experiment.

Foto: Universität Göttingen


In der makroskopischen Welt nicht ohne weiteres möglich: Wiederherstellen eines Ausgangszustands nach einer starken Störung.

Foto: Universität Göttingen

Im vergangenen Jahr hatten Wissenschaftler der Universität Göttingen gezeigt, dass ein solcher Überlagerungszustand freier Elektronen in einem ultraschnellen Elektronenmikroskop erzeugt werden kann, indem die Elektronen mit intensiven Lichtfeldern bestrahlt werden. Nun ist es ihnen erstmals gelungen, einen Strahl freier Elektronen durch eine präzise Folge von Lichtpulsen quantenmechanisch „kohärent“ zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature Physics erschienen.

Wenn wir einen Film sehen, der gerade rückwärts abgespielt wird, erkennen wir dies üblicherweise auf den ersten Blick. Unsere Alltagserfahrung lehrt uns, dass die meisten Vorgänge – beispielsweise das Zerspringen eines Blumentopfes – nicht ohne weiteres umkehrbar sind.

Dieser „gerichtete Zeitpfeil“ entsteht durch die ungeordnete Wechselwirkung der großen Zahl daran beteiligter Atome und Moleküle. Ist man jedoch in der Lage, ein einzelnes Atom oder Elektron isoliert zu betrachten, lassen sich mikroskopische, quantenmechanische Prozesse häufig sehr gezielt steuern oder auch vollständig umkehren, was auch als „kohärente Kontrolle“ bezeichnet wird.

Die Arbeitsgruppe um Prof. Dr. Claus Ropers und Dr. Sascha Schäfer am IV. Physikalischen Institut der Universität Göttingen hat nun experimentell gezeigt, dass diese Konzepte auf einen Strahl freier Elektronen übertragen werden können.

Im Experiment lenkten die Forscher einen kurzen Elektronenpuls durch eine nanoskopisch kleine Metallstruktur, in der die Elektronen mit mehrfachen, präzise gesteuerten Lichtfeldern wechselwirken können. Ausgehend von einer einzigen Anfangsgeschwindigkeit der Elektronen erzeugen diese Lichtfelder in der Nanostruktur quantenmechanische Überlagerungen verschiedener Geschwindigkeiten. Die genaue Intensität und die zeitliche Verzögerung dieser Lichtpulse beeinflusst dabei das Endergebnis.

So kann beispielsweise in einem ersten Laserbeschuss eine breite Verteilung an Geschwindigkeiten erzeugt werden. Mit einem zweiten Puls kann diese dann entweder noch stärker verbreitert oder wieder in den Ausgangszustand zurückversetzt werden – vereinfacht ausgedrückt wie das Zusammensetzen des zersprungenen Blumentopfes.

Eine analoge Form der mehrfach gepulsten Wechselwirkung mit Quantensystemen wird in verschiedenen Spektroskopie- und Abbildungsmethoden verwendet, beispielsweise in der Magnetresonanztomografie (MRT).

Auf dem gleichen Prinzip beruhen Atomuhren für hochpräzise Zeitmessungen und damit sogar die Definition der Sekunde. Auch die Göttinger Forscher verbinden ihre Technologie mit der Hoffnung auf neue Anwendungen. „Wir möchten die extrem hohe zeitliche Empfindlichkeit des Phänomens nutzen“, so Katharina Echternkamp, Doktorandin am IV. Physikalischen Institut und Erstautorin der Studie. „In Zukunft werden wir Elektronenpulse mithilfe von Licht maßgeschneidert strukturieren können, was völlig neue Formen der zeitaufgelösten Elektronenmikroskopie ermöglicht.“

Originalveröffentlichung: Katharina E. Echternkamp et al. Ramsey-type phase control of free-electron beams. Nature Physics 2016. Doi: 10.1038/nphys3844.

Kontaktadressen:
Prof. Dr. Claus Ropers
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-4549
E-Mail: cropers@gwdg.de

Dr. Sascha Schäfer
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-4576
E-Mail: schaefer@ph4.physik.uni-goettingen.de

Weitere Informationen:

http://www.uni-goettingen.de/de/91116.html

Thomas Richter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics