Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Jonglieren mit freien Elektronen

19.08.2016

Göttinger Wissenschaftler manipulieren Quantenzustand freier Elektronen mit Lichtfeldern

In der klassischen Physik kann ein Elektron nur eine einzige, bestimmte Geschwindigkeit annehmen. Quantenmechanisch ist es jedoch möglich, dass es sich in einer Überlagerung verschiedener Geschwindigkeiten befindet.


Gemessene Verteilungen der Elektronengeschwindigkeiten im Experiment.

Foto: Universität Göttingen


In der makroskopischen Welt nicht ohne weiteres möglich: Wiederherstellen eines Ausgangszustands nach einer starken Störung.

Foto: Universität Göttingen

Im vergangenen Jahr hatten Wissenschaftler der Universität Göttingen gezeigt, dass ein solcher Überlagerungszustand freier Elektronen in einem ultraschnellen Elektronenmikroskop erzeugt werden kann, indem die Elektronen mit intensiven Lichtfeldern bestrahlt werden. Nun ist es ihnen erstmals gelungen, einen Strahl freier Elektronen durch eine präzise Folge von Lichtpulsen quantenmechanisch „kohärent“ zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature Physics erschienen.

Wenn wir einen Film sehen, der gerade rückwärts abgespielt wird, erkennen wir dies üblicherweise auf den ersten Blick. Unsere Alltagserfahrung lehrt uns, dass die meisten Vorgänge – beispielsweise das Zerspringen eines Blumentopfes – nicht ohne weiteres umkehrbar sind.

Dieser „gerichtete Zeitpfeil“ entsteht durch die ungeordnete Wechselwirkung der großen Zahl daran beteiligter Atome und Moleküle. Ist man jedoch in der Lage, ein einzelnes Atom oder Elektron isoliert zu betrachten, lassen sich mikroskopische, quantenmechanische Prozesse häufig sehr gezielt steuern oder auch vollständig umkehren, was auch als „kohärente Kontrolle“ bezeichnet wird.

Die Arbeitsgruppe um Prof. Dr. Claus Ropers und Dr. Sascha Schäfer am IV. Physikalischen Institut der Universität Göttingen hat nun experimentell gezeigt, dass diese Konzepte auf einen Strahl freier Elektronen übertragen werden können.

Im Experiment lenkten die Forscher einen kurzen Elektronenpuls durch eine nanoskopisch kleine Metallstruktur, in der die Elektronen mit mehrfachen, präzise gesteuerten Lichtfeldern wechselwirken können. Ausgehend von einer einzigen Anfangsgeschwindigkeit der Elektronen erzeugen diese Lichtfelder in der Nanostruktur quantenmechanische Überlagerungen verschiedener Geschwindigkeiten. Die genaue Intensität und die zeitliche Verzögerung dieser Lichtpulse beeinflusst dabei das Endergebnis.

So kann beispielsweise in einem ersten Laserbeschuss eine breite Verteilung an Geschwindigkeiten erzeugt werden. Mit einem zweiten Puls kann diese dann entweder noch stärker verbreitert oder wieder in den Ausgangszustand zurückversetzt werden – vereinfacht ausgedrückt wie das Zusammensetzen des zersprungenen Blumentopfes.

Eine analoge Form der mehrfach gepulsten Wechselwirkung mit Quantensystemen wird in verschiedenen Spektroskopie- und Abbildungsmethoden verwendet, beispielsweise in der Magnetresonanztomografie (MRT).

Auf dem gleichen Prinzip beruhen Atomuhren für hochpräzise Zeitmessungen und damit sogar die Definition der Sekunde. Auch die Göttinger Forscher verbinden ihre Technologie mit der Hoffnung auf neue Anwendungen. „Wir möchten die extrem hohe zeitliche Empfindlichkeit des Phänomens nutzen“, so Katharina Echternkamp, Doktorandin am IV. Physikalischen Institut und Erstautorin der Studie. „In Zukunft werden wir Elektronenpulse mithilfe von Licht maßgeschneidert strukturieren können, was völlig neue Formen der zeitaufgelösten Elektronenmikroskopie ermöglicht.“

Originalveröffentlichung: Katharina E. Echternkamp et al. Ramsey-type phase control of free-electron beams. Nature Physics 2016. Doi: 10.1038/nphys3844.

Kontaktadressen:
Prof. Dr. Claus Ropers
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-4549
E-Mail: cropers@gwdg.de

Dr. Sascha Schäfer
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-4576
E-Mail: schaefer@ph4.physik.uni-goettingen.de

Weitere Informationen:

http://www.uni-goettingen.de/de/91116.html

Thomas Richter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics