Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Pyramide zur Säule

14.12.2010
Nanosäulen wachsen aus winzigen Kristallkeimen. Diese Phase ist entscheidend für Form und Größe der Säulen. Forscher des Paul-Drude-Instituts untersuchen deshalb intensiv, was zu Beginn des Wachstums von Nanosäulen eigentlich passiert.

Winzige Säulen stehen in Reih und Glied, alle sind exakt gleich groß, ihre Durchmesser betragen nur einige hundert Atome und auch ihr Abstand ist überall gleich. Dies zu erreichen ist ein Ziel von Halbleiterphysikern wie Lutz Geelhaar vom Paul-Drude-Institut. „Für mögliche Anwendungen wie Leuchtdioden oder Minidrähte müssten Halbleiter-Nanosäulen exakt reproduzierbar in Größe und Form herstellbar sein“, sagt er.


Nanosäulen beginnen das Wachstum als Pyramiden, aus denen dann Säulen werden. Abb.: PDI

Noch ist das schwierig. Das liegt daran, dass die Minisäulen in einem faszinierenden selbstorganisierten Prozess auf der Unterlage spießen, ähnlich einem Rasen im Garten. Und wie Grashalme sind die Säulen mal größer mal kleiner, mal dicker mal dünner. Diese Selbstorganisation hat aber einen entscheidenden Vorteil, weiß Geelhaar: „Die Kristalleigenschaften sind hervorragend, solche kleinen Strukturen würde man mit Ätz- oder Lithografieverfahren in dieser Qualität kaum hinbekommen.“

Genau wie Halbleiterschichten wachsen die Säulen mit Hilfe der Molekularstrahlepitaxie (MBE). Bei diesem Verfahren werden in einer Vakuumkammer die Elemente verdampft, welche als Kristall auf einer Unterlage wachsen und dabei deren Kristallstruktur übernehmen. Im Gegensatz zu Schichten können die Forscher bei Säulen viel mehr Substrate und Halbleitermaterialien kombinieren, weil Säulen auch auf Unterlagen wachsen, deren Kristallgitter eigentlich nicht passt. PDI-Forscher haben nun die Anfangsphase des Wachstums von Galliumnitrid (GaN)- Säulen unter verschiedenen Bedingungen intensiv untersucht. Sie nutzen dafür Verfahren, wie die Elektronenstrahlbeugung und die Massenspektrometrie, die es erlauben, das Wachstum zu beobachten ohne es zu unterbrechen.

Als Starter für das Wachstum können kleine Katalysatorpartikel aus Gold oder Nickel dienen. Die Forscher ließen GaN auf Saphir (Aluminiumoxid) wachsen und konnten zeigen, dass der Kristallisationskeim verschiedene Phasen durchläuft. Zunächst bildet sich eine Legierung von Nickel und Gallium, diese wechselt ihre Kristallstruktur und dann beginnt das Wachstum von GaN unterhalb des Nickelkatalysators. Beim weiteren Wachs- tum der Säule wird der Katalysator wie ein Deckel immer weiter nach oben geschoben. Der Zustand des Katalysators beeinflusst dabei den Durchmesser der Säulen.

Noch mehr interessieren sich die Forscher aber für Säulen, die ohne Katalysator wachsen. Denn jedes fremde Atom stört letztlich die elektrischen und optischen Eigenschaften von Halbleitern. Ein solches selbstinduziertes Wachstum passiert, wenn in der MBE-Kammer ganz spezielle Bedingungen herrschen. Als Unterlage diente den Forschern in diesem Fall eine Aluminiumnitrid-Schicht (AlN). Dessen Kristallstruktur passt mit GaN nicht exakt zusammen.

Die Forscher konnten beobachten, dass unter diesen Bedingungen zunächst kleine runde Hügel auf der Unterlage wachsen. Deren Kristallgitter ist ein wenig verzerrt, was der Kristall durch weiteres Wachstum ausgleicht. Aus den Hügeln werden stumpfe und dann spitze Pyramiden. Das Säulenwachstum beginnt schließlich mit einer Versetzung. Das heißt, das Kristallgitter ist so stark verzerrt, dass da wo eigentlich zwei Atome hingehören, nur noch eines sitzt – der Kristall wächst mit der verringerten Anzahl von Atomreihen weiter. „Dadurch ändert sich die Balance der verschiedenen Beiträge zur Gesamtenergie, was das Säulenwachstum auslöst. Der Zeitpunkt des Auftretens dieser Versetzung ist so auch bestimmend für den Durchmesser der Säule“, so Geelhaar. Die Forscher hoffen über die Aufklärung der Physik solcher Prozesse dem Ziel von einheitlichen Säulen ein Stück näher zu kommen.

Nano Lett. 10, 3426-3431 (2010)
Physical Review B 81, 085310 (2010)
Nanotechnology 21, 245705 (2010)
Kontakt:
Dr. Lutz Geelhaar
Paul-Drude-Institut
Tel.: 030-20377 359
lutz.geelhaar@pdi-berlin.de

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.pdi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen