Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pulsierende Leere

05.08.2010
Physiker des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik haben erstmals beobachtet was an dem Platz in einem Atom passiert, an dem ein einzelnes Elektron herausgeschlagen wurde. Sie berichten darüber im Wissenschaftsmagazin „Nature“ (5th August 2010, Doi:10.1038/nature09212).

Ein internationales Team vom Labor für Attosekundenphysik (www.attoworld.de), unter der Leitung von Prof. Ferenc Krausz am Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität München hat erstmals beobachtet, was quantenmechanisch an dem Ort in einem Edelgasatom passiert, an dem kurz zuvor ein Elektron aus der Umlaufbahn herausgeschlagen wurde. Die Forscher benutzten dazu Lichtpulse, die nur wenig über 100 Attosekunden lang dauerten. Neben den Münchner Laserphysikern waren an der Kooperation auch Forscher aus Saudi-Arabien und den USA beteiligt.

Quantenteilchen, wie Elektronen, sind flüchtige Zeitgenossen. Wo genau sich Elektronen in einem Atom aufhalten, kann niemand sagen. Die Elementarteilchen folgen den Gesetzen der Quantenmechanik. Dabei ergibt sich die Aufenthaltswahrscheinlichkeit der Partikel durch eine Art pulsierende Wolke. Die Bewegung von Elektronen auf ihren Umlaufbahnen um Atome, dauern nur wenige Attosekunden. Eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde. Was genau die Elementarteilchen im Dunstkreis der Atome jedoch anstellen, ist bis heute weitgehend unbekannt. Fest steht, dass man nicht zeitgleich die Bewegung und den Aufenthaltsort eines Teilchens bestimmen kann. Deswegen ergibt sich eine Art Wolke für die quantenmechanische Beschreibung der Aufenthaltswahrscheinlichkeit von Elementarteilchen.

Jetzt ist dem internationalen Team vom Labor für Attosekundenphysik (LAP) erstmals die Beobachtung gelungen, wie sich die Elektronenwolke zeitlich bewegt, wenn eines der Elektronen im Atom durch einen Lichtpuls herausgelöst wird. Mit dabei in der Forschungs-Kooperation waren Physiker des Max-Planck-Instituts für Quantenoptik (Garching), der Ludwig-Maximilians-Universität München, der King-Saud-Universität (Riad, Saudi-Arabien), des Argonne National Laboratory (USA) und der University of California, Berkeley (USA).

Bei ihren Experimenten ließen die Physiker Laserpulse aus dem sichtbaren Bereich des Spektrums auf Kryptonatome treffen. Die Lichtpulse mit einer Dauer von weniger als vier Femtosekunden schlugen aus den äußeren Schalen der Atome jeweils ein Elektron heraus (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde).

Nachdem ein Laserpuls aus einem Atom ein Elektron herausgeschlagen hat, wird das Atom zum positiv geladenen Ion. An der Stelle, an der das Elektron das Atom verlassen hat entsteht ein positiv geladenes Loch. Quantenmechanisch gesehen pulsiert dieser freie Platz nun im Atom weiter als sogenannte Quantenschwebung.

Das Pulsieren konnten die Physiker nun mit einem zweiten Lichtpuls, der nur noch rund 150 Attosekunden dauerte und sich im Extremen ultravioletten Licht befand, direkt beobachten, also quasi fotografieren. Es stellte sich heraus, dass sich die Position des Lochs im Ion, also der positiv geladenen Stelle, sich innerhalb von nur rund sechs Femtosekunden zyklisch zwischen einer langgestreckten keulenartigen und einer kompakten zusammengezogenen Form hin und her bewegt. „Damit ist es uns zum ersten Mal gelungen, die Veränderung einer Ladungsverteilung in einem Atom direkt aufzuzeichnen“, erklärt Dr. Eleftherios Goulielmakis, Forschungsgruppenleiter im Team von Prof. Krausz.

„Mit unseren Experimenten haben wir einen einzigartigen Echtzeit-Einblick in den Mikrokosmos erhalten“, erläutert Ferenc Krausz. „Wir haben erstmals die quantenmechanischen Vorgänge in einem ionisierten Atom mit Attosekunden-Lichtblitzen aufgezeichnet.“ Die Erkenntnisse der LAP-Forscher helfen, die Dynamik von Elementarteilchen außerhalb des Atomkerns besser zu verstehen. Diese blitzschnelle Dynamik ist vor allem verantwortlich für den Ablauf biologischer und chemischer Prozesse.

Ein genaueres Wissen um diese Vorgänge wird künftig zur besseren Kenntnis der mikroskopischen Ursachen der Entstehung schwerer Krankheiten führen. Ebenso dient das Verständnis der ultraschnellen Prozesse zur schrittweisen Beschleunigung der elektronischen Datenverarbeitung in Richtung der ultimativen Grenzen der Elektronik. [Thorsten Naeser]

Weiteres Bildmaterial zum Thema ist erhältlich unter:
http://www.attoworld.de/Home/newsAndPress/BreakingNews/index.html
Originalveröffentlichung:
Eleftherios Goulielmakis, Zhi-Heng Loh, Adrian Wirth, Robin Santra, Nina Rohringer, Vladislav S. Yakovlev, Sergey Zherebtsov, Thomas Pfeifer, Abdallah M. Azzeer, Matthias F. Kling, Stephen R. Leone und Ferenc Krausz.
“Real-time observation of valence electron motion”,
Nature, 5. August 2010,Doi:10.1038/nature09212
Weitere Informationen erhalten Sie von:
Prof. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32905-612
Fax: +49 89 32905-649
E-Mail: ferenc.krausz@mpq.mpg.de
http://www.attoworld.de
Dr. Eleftherios Goulielmakis
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32 905-632
Fax: +49 89 32 905-200
E-mail: elgo@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.attoworld.de
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie