Publikation in Nature Physics: Kuppeln im Nanobereich

Nanokupplung: Bringt man den äußeren Ring von Teilchen in Rotati-on, so überträgt sich diese Drehung auch auf die inneren Teilchen und damit die zentrale Achse. (Abbildung: Prof. Dr. Hartmut Löwen, Institut für Theoretische Physik II, HHU)

Wenn ein Autofahrer auf das Kupplungspedal tritt, denkt er kaum daran: durch die Kupplung wird das Drehmoment des Motors auf das Getriebe und weiter auf den Antriebsstrang und schließlich die Räder seines Fahrzeugs übertragen.

In unserer makroskopischen Alltagswelt sind Kupplungen seit langem getestet und optimiert. Doch wie funktioniert die Kraftübertragung im Nanometerbereich (ein Nanometer = ein milliardstel Meter), wo eine zähe Trägerflüssigkeit zwischen den Kupplungselementen Energie verschleißt und zudem thermische Fluktuationen eine große Rolle spielen?

Ein internationales Wissenschaftlerteam aus Santa Barbara, Princeton, Bristol, Mainz und Düsseldorf hat gemeinsam eine Kupplung im Nanobereich aufgebaut. An ihr haben sie die Drehmomentübertragung experimentell nachgewiesen und auch theoretisch analysiert.

Die Nanokopplung sieht freilich anders aus als diejenige in Pkw. Die Forscher benutzen einen Ring aus Kolloidteilchen, Nanometer großen Teilchen also, die hier in einem zähflüssigen Medium schwimmen. Diese Teilchen werden gezielt mit Licht bestrahlt, wodurch auf sie eine Kraft ausgeübt wird. Durch diese so genannte optische Pinzette werden die Teilchen in Rotation versetzt und übertragen ihre Drehung auf andere, vom Ring eingeschlossene Teilchen.

„Das Ding sieht etwa so aus wie eine rotierende Waschmaschinentrommel, aber alle Abmessungen sind winzig klein.“, sagt Dr. Patrick Royall von der Universität Bristol. Seine Arbeitsgruppe hat mit optischen Methoden den Ring deformiert und dann die Drehmomentübertragung auf die inneren Teilchen nachgewiesen.

Theoretische Physiker der Heinrich-Heine-Universität Düsseldorf (HHU) simulierten die Nanokupplung auf dem Computer und entwickelten dazu theoretische Modelle. Sie wiesen nach, dass der Wirkungsgrad der Nanokupplung zwar klein ist, aber durch geeignete Wahl von Systemparametern optimiert werden kann. Sie identifizierten dabei drei verschiedene Transfersituationen: einen inneren Festkörper, der das Drehmoment optimal aufnimmt wie ein passgenaues Zahnrad; eine innere Flüssigkeit mit hohen Reibungsverlusten; und eine für den Nanobereich charakteristische Reiß-Rutsch-Kombination.

Doch wozu benötigt man eine Nanokupplung? Dazu Prof. Dr. Hartmut Löwen vom Institut für Theoretische Physik II der HHU: „Das grundlegende Verständnis des Kuppelprozesses wird uns bei der Konstruktion von Nanomaschinen helfen, bei denen ein Drehmomenttransfer absolut wesentlich ist“. Solche Maschinen können in Zukunft möglicherweise Strukturen aus atomaren Bausteinen zusammensetzen oder im Körper aktiv auf Ebene von Zellbausteinen gezielt Krankheitserreger bekämpfen.

Originalpublikation
Ian Williams, Erdal C. Oğuz, Thomas Speck, Paul Bartlett, Hartmut Löwen and C. Patrick Royall, Transmission of torque at the nanoscale, Nature Physics, Vol 11, October 2015
DOI: 10.1038/NPHYS3490

Kontakt
Prof. Dr. Hartmut Löwen
Institut für Theoretische Physik II
Tel.: +49 (0)211 81 11377
E-Mail: hlowen@thphy.uni-duesseldorf.de

Media Contact

Dr.rer.nat. Arne Claussen idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.hhu.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer