Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Präzisionsmassenmessung an Palladium-110 weisen Weg zur Natur der Neutrinos

10.02.2012
Ist das Neutrino sein eigenes Antiteilchen? Der Nachweis des neutrinolosen doppelten Betazerfalls würde diese Frage klären.
Neue präzise Massenmessungen der Zerfallsenergie von Palladium-110, durchgeführt von Forschern des Max-Planck-Instituts für Kernphysik in Heidelberg, der Universitäten von Dresden und Greifswald sowie des Helmholtzzentrums für Schwerionenforschung in Darmstadt, rücken dieses Isotop in den engeren Kreis vielversprechender Kandidaten zur Suche nach dem neutrinolosen Doppelbetazerfall und damit zur Klärung der Natur der Neutrinos (Physical Review Letters, 10.02.2012).

In der Neutrinophysik spielt der Betazerfall eine wichtige Rolle. Schon 26 Jahre vor der ersten Beobachtung eines Neutrinos schlug Wolfgang Pauli 1930 in einem Brief dessen Existenz vor, insbesondere deswegen, weil die Energie der beim Betazerfall freigesetzten Elektronen ein kontinuierliches Spektrum zeigt und somit bei Gültigkeit des Energiesatzes ein weiteres Teilchen die Überschussenergie aufnehmen müsste. Beim Betazerfall eines Atomkerns wandelt sich ein Neutron unter Aussendung eines Elektrons und eines Antineutrinos in ein Proton um. Dabei bleibt die Zahl der Leptonen, zu denen Elektronen und Neutrinos zählen, erhalten (Antiteilchen zählt man negativ).

Neutrinos haben eine Reihe bemerkenswerter Eigenschaften: Sie sind elektrisch neutral und wechselwirken mit der übrigen Materie nur sehr schwach, so dass sie diese nahezu ungehindert durchdringen. Unbekannt sind aber noch die Absolutwerte der Neutrinomassen und die Frage, ob Neutrinos sogenannte Majoranateilchen und damit ihre eigenen Antiteilchen sind. Letzteres hat grundsätzliche Konsequenzen für die Teilchenphysik und Kosmologie und daher unternehmen Forscher große Anstrengungen, dies experimentell zu testen.

Ein möglicher Nachweis der Majorana-Eigenschaft wäre die Beobachtung des neutrinolosen doppelten Betazerfalls. Normalerweise entstehen dabei aus zwei Neutronen zwei Protonen sowie zwei Elektronen und zwei Antineutrinos, die den Kern verlassen. Ist aber das Neutrino mit seinem Antiteilchen identisch, so kann es nach der Entstehung beim Zerfall des einen Neutrons vom anderen Neutron gleich wieder verschluckt werden, so dass nur die beiden Elektronen ausgesendet werden und praktisch die volle Zerfallsenergie mit sich tragen. Ein solcher neutrinoloser Prozess ist sehr unwahrscheinlich – hier geht es um Halbwertszeiten, die das Alter des Universums um viele Größenordnungen übersteigen. Um ihn überhaupt zu beobachten, bedarf es eines geeigneten Radionuklids in ausreichender Menge und eines großen experimentellen Aufwandes, um genau diesen Zerfall aus der Fülle von Hintergrundereignissen zu isolieren. Ein Beispiel für einen solchen Versuch ist das GERDA-Experiment im italienischen Gran-Sasso-Untergrundlabor. Untersucht wird dort das Germanium-Isotop mit der Massenzahl 76.

Neben Germanium-76 gibt es noch einige wenige weitere Nuklide, die als Kandidaten für die Suche nach dem neutrinolosen Doppelbetazerfall in Frage kommen könnten: darunter Palladium-110. Eine Eingangsgröße in die Berechnung der Halbwertszeit ist die beim Zerfall freigesetzte Energie. Nach Einsteins Formel E=mc^2 ist diese Energie äquivalent zur Massendifferenz von Mutter- und Tochternuklid des Zerfalls (zuzüglich der doppelten Elektronenmasse). Die ISOLTRAP-Kollaboration hat nun mit Ihrem Penningfallen-Massenspektrometer am CERN die Massendifferenz von Palladium-110 und seinem Tochternuklid Cadmium-110 mit bisher nicht erreichter Genauigkeit ermittelt. Hierzu wurde die kreisende Bewegung einfach geladener Palladium- bzw. Cadmium-Ionen im Magnetfeld einer speziellen Ionenfalle vermessen und aus der daraus gewonnenen Massendifferenz die gesuchte Zerfallsenergie zu 2017,85 keV (±0,64 keV) bestimmt. Das neue Ergebnis liegt 14 keV über dem bisherigen Wert; zugleich konnte die Unsicherheit gegenüber dem besten früheren Wert um fast das 20-fache verringert werden.

Der Zerfall wird neben der freigesetzten Energie entscheidend durch die Kernstrukturen von Ausgangs- und Tochterkern bestimmt. Die quantitative Beschreibung erfolgt durch sogenannte Matrixelemente, die von Kollegen der Partnerinstitute berechnet wurden. Aus diesen Eingangsdaten ergibt sich die Halbwertszeit für den gewöhnlichen Doppelbetazerfall von Palladium-110 zu 1,5x1020 Jahren. Anschaulich bedeutet diese astronomisch hohe Zahl, dass in 1 kg Palladium-110 pro Tag ca. 70 gewöhnliche Doppelbetazerfälle auftreten.

Die Halbwertszeit für den neutrinolosen Doppelbetazerfall hängt zusätzlich von der Neutrinomasse ab, für die bislang nur eine obere Grenze bekannt ist. Mit den derzeit diskutierten Werten für die Neutrinomasse ergeben sich 5x10^24 bis 1x10^25 Jahre – das wären bei 100 kg Palladium-110 ca. 40 bis 80 neutrinolose Doppelbetazerfälle pro Jahr. Trotz dieser kleinen Zahl rückt damit Palladium-110 aufgrund seines recht hohen Vorkommens (gemessen an der Weltjahresproduktion das Dreifache von Germanium-76) in den engeren Kreis vielversprechender Kandidaten für Studien zum doppelten Betazerfall und der Suche nach der Neutrinomasse, zumal aufgrund der hohen Genauigkeit der neuen Massenbestimmung der Suchbereich der elektronischen Energien für diese Ereignisse stark eingeschränkt werden konnte. Für einen möglichen zukünftigen Detektor mit Palladium-110 müssen freilich weitere Voraussetzungen erfüllt sein, die nicht Gegenstand der aktuellen Untersuchungen waren. Hierzu sind vor allem noch Fragen der radiochemischen Reinigung, Detektionsverfahren und Kontrolle von Hintergrundereignissen zu klären, die wie bei anderen Neutrino-Experimenten eine erheblich technische Herausforderung darstellen.

Originalveröffentlichung:

D. Fink, J. Barea, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, F. Herfurth, A. Herlert, J. Kotila, M. Kowalska, S. Kreim, D. Lunney, S. Naimi, M. Rosenbusch, S. Schwarz, L. Schweikhard, F. Šimkovic, J. Stanja and K. Zuber
Q-Value and Half-Lives for the Double-Beta-Decay Nuclide 110Pd
Physical Review Letters 108, 062502 (2012)
(doi: 10.1103/PhysRevLett.108.062502)

Kontakt:

Prof. Dr. Klaus Blaum
Tel.: 06221-516850
E-Mail: klaus.blaum (at) mpi-hd.mpg.de
Max-Planck-Institut für Kernphysik, Heidelberg
http://www.mpi-hd.mpg.de/blaum/index.de.html

Prof. Dr. Lutz Schweikhard
Tel.: 03834-864700
E-Mail: LSchweik (at) physik.uni-greifswald.de
Institut f. Physik, Ernst-Moritz-Arndt-Universität Greifswald
http://www6.physik.uni-greifswald.de/index.html

Prof. Dr. Kai Zuber
Tel.: 0351-46342250
E-Mail: Zuber (at) physik.tu-dresden.de
Institut für Kern- und Teilchenphysik, TU Dresden
http://iktp.tu-dresden.de/index.php?id=203

Dr. Frank Herfurth
Tel.: 06159-711360
E-Mail: f.herfurth (at) gsi.de
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de/blaum/index.de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften