Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Präzisionsmassenmessung im Labor gewährt Blick in die Kruste von Neutronensternen

28.01.2013
Bei Messungen mit dem Präzisionsmassenspektrometer ISOLTRAP am Forschungszentrum CERN in Genf konnte ein internationales Forschungsteam erstmals die Masse des Isotops Zink-82 bestimmen.

Im Zusammenspiel mit Vorhersagen von Neutronensternmodellen kann damit die Zusammensetzung der äußeren Kruste von Neutronensternen tiefer ausgelotet werden.


Aufbau eines Neutronensterns (oben links) und ein Tiefenprofil der Isotopenzusammensetzung der äußeren Kruste (rechts). In Fettdruck die Nuklide, dessen Massen bereits experimentell bestimmt wurden. Die Veränderungen im Aufbau der Kruste durch die neue Kernmassenmessung von Zink-82 sind in rot dargestellt. Links unten: Schematische Darstellung der Hauptkomponenten des ISOLTRAP-Päzisionsmassenspektrometers und Reso-nanzkurve, aus welcher die Masse des Zink-82-Nuklids bestimmt wurde. Die Grafik steht zum Download bereit unter: http://www.uni-greifswald.de/informieren/pressestelle/download-presseinformationen/pressefotos-2013/pressefotos-januar-2013.html
Grafik: Robert Wolf, Universität Greifswald

Neutronensterne entstehen, wenn massereiche Sterne an ihrem Lebensende in Supernovae explodieren. Sie werden auch als mögliche Geburtsstätten schwerer Elemente gehandelt.

Die jetzt in den Physical Review Letters publizierten Ergebnisse demonstrieren das enge Wechselspiel zwischen experimentellen und theoretischen Untersuchungen und belegen insbesondere die Bedeutung von Labormessungen für die astrophysikalische Forschung. Die Zeitschrift wählte eine Abbildung des Artikels für das Titelblatt der neuesten Ausgabe aus.

Mit Durchmessern von wenigen Kilometern gehören Neutronensterne zu den kompaktesten Objekten unseres Universums. Sie entstehen, wenn massereiche Sterne einen Großteil ihres Materials durch Kernfusion in Eisen umgewandelt haben, den am stärksten gebunden Atomkernen. Danach kommt die Fusion im Sternzentrum zum Erliegen, sodass auf diese Weise keine schwereren Elemente gebildet werden können. Stattdessen kollabiert der Stern aufgrund seiner Gravitation und erstrahlt in einer Supernova.

Zurück bleibt ein Neutronenstern, ein Objekt welches nach gängigen Theorien im Wesentlichen aus Neutronen besteht, da der enorme Gravitationsdruck „die Elektronen in die Protonen presst“. Erst durch die extremen Drücke und Dichten, welche selbst in den äußersten Neutronensternschichten – der „Kruste“ – vorherrschen, entstehen eine Reihe von schwereren Elementen.

Durch Gezeitenkräfte, die z.B. bei Kollisionen mit einem weiteren Neutronenstern oder einem schwarzen Loch auftreten, könnten diese Elemente freigesetzt werden und so die Häufigkeitsverteilung der Elemente unseres Universums bereichern, eine der wichtigsten aber bis dato noch offenen Fragen der Astrophysik.

Die extremen Bedingungen im Inneren der Neutronensterne können in irdischen Labors nicht reproduziert werden. Daher versucht man, sich mittels theoretischer Modelle einen Zugang zum Aufbau der dichten Neutronenmaterie zu verschaffen. Entscheidende Eingangsgrößen für diese Berechnungen sind die Bindungsenergien neutronenreicher Atomkerne. Über Einsteins bekannteste Gleichung, E=mc2, hängen diese Bindungsenergien direkt mit den Kernmassen zusammen. Präzisionsmassenwerte der entsprechenden exotischen Kerne sind daher Voraussetzung zur Modellierung der Neutronensternkruste.

Bislang war die Zusammensetzung der Neutronensterne (mit typischen Radien von 10km und 1,4-fachen Sonnen-massen) bis zu einer Tiefe von etwa 210m bekannt. Dort vermutete man Zink-80, das kurzlebigste Zinkisotop, dessen Atommasse bisher noch experimentell ermittelt werden konnte. Darunter wurde als nächsttieferes Nuklid unter anderem Zink-82 vorausgesagt. Dessen Massenwert beruhte allerdings lediglich auf Abschätzungen, da eine direkte Messung bisher noch nicht möglich war. Einem internationalen Forscherteam ist es nun gelungen, mit dem Penningfallen-Massenspektrometer ISOLTRAP am CERN in Genf diese Messung durchzuführen. Die kurzlebigen Atome (mit einer Halbwertszeit von lediglich einer Viertelsekunde) wurden an der dortigen ISOLDE-Anlage durch Protonenbeschuss von Uran erzeugt.

Dabei entstand allerdings auch eine Vielzahl weiterer Atome, die nach Ionisation zum ISOLTRAP-Aufbau geleitet wurden. Daher war eine der Hauptschwierigkeiten, die kurzlebigen und in geringsten Mengen produzierten Zink-82-Isotope effizient von isobaren Kontaminationen zu trennen, also von Ionen, deren Kerne die gleiche Gesamtanzahl von Protonen und Neutronen besitzen und damit eine ähnliche Masse haben. Die Entfernung dieser Teilchen war eine entscheidende Voraussetzung für die nachfolgenden Präzisi-onsmassenmessungen.

Zur Isolation der Zink-82-Ionen wurde erstmals ein an der Universität Greifswald entwi-ckelter hochauflösender Flugzeitzeitmassenseparator verwendet, der diese Aufgabe in wenigen hundertstel Sekunden erfüllte. Dies bedeutete eine Zeitersparnis von über einer Größenordnung gegenüber den Methoden, die zuvor zur Verfügung standen. Damit war es möglich, die Masse von Zink-82 erstmals zu bestimmen – mit der extrem kleinen Unsicherheit von nur 1 zu 25 Millionen.

Der experimentelle Massenwert von Zink-82 erlaubt es, die Modellvorhersagen zu vergleichen. Dazu wird die Zusammensetzung der Neutronensternkruste jeweils neu berechnet. Die revidierte Bindungsenergie von Zink-82 führt kurioserweise dazu, dass dieses Nuklid in der Kruste gar nicht mehr vorkommt. Stattdessen verschiebt sich die Tiefe von Zink-80 nach unten, nun gefolgt von Nickel-78.

Neutronensterne wurden bereits in den 1930 Jahren als Überreste von Supernovaexplosionen vorausgesagt. Allerdings sind sie nur schwer zu beobachten. Einige von ihnen machen sich jedoch als „Pulsare“ bemerkbar und senden, ähnlich einem Leuchtturm, periodisch Pulse vom Radio- bis in den Röntgenbereich aus. Für die Entdeckung der Pulsare erhielt Antony Hewish 1974 den Nobelpreis in Physik. 1993 wurde ein weiterer Nobelpreis für den ersten indirekten Nachweis von Gravitationswellen durch Neutronensternbeobachtungen vergeben.

Allerdings ist die theoretische Beschreibung der Neutronensterne bis heute unvollständig, da deren extreme Eigenschaften auf der Erde nicht nachgeahmt werden können. Man kann aber mit entsprechenden Modellen in ihrem Aufbau mehrere Schalen unterscheiden, vergleichbar mit dem Schalenaufbau der Erde. Um einen homogenen Kern verlaufen die (inhomogenen) inneren und äußeren Krusten. In letzterer existieren noch isolierte Atomkerne umgeben von einem Elektronengas. In den obersten, wenige 10 m tiefen Schichten werden Isotope von Eisen, Nickel und Krypton vorhergesagt, welche auch unter terrestrischen Bedingungen stabil und damit gut bekannt sind. Dagegen bestehen die nächsten Schichten aus sehr kurzlebigen Nukliden, welche nur durch den ständigen Wiedereinfang von Elektronen im Gleichgewicht gehalten werden. Der Übergang zur „inneren Kruste“ erfolgt in einer Tiefe von 300m bis 500m, wo die Atomkerne nicht mehr alle Neutronen an sich binden können und in einem „See“ freier Neutronen schwimmen.

Mit dem Spektrometer ISOLTRAP am CERN werden seit etwa einem Viertel Jahrhundert Präzisionsmassenmes-sungen an kurzlebigen Nukliden durchgeführt. Die Ergebnisse gehen unter anderem in Kernstrukturberechnungen und Tests fundamentaler physikalischer Fragen ein. Die Apparatur wurde immer wieder verbessert und erweitert. Die jüngste Ergänzung, ein Multireflektions-Flugzeitmassenspektrometer, wurde von der Universität Greifswald beigesteuert. An der Zink-82-Messung waren weiterhin Wissenschaftler des CERN, des Max-Planck-Instituts für Kernphysik in Heidelberg, des Helmholtzzentrums für Schwerionenforschung in Darmstadt, des Helmholtz-Instituts Mainz, des japanischen Forschungszentrums RIKEN, sowie von Universitäten in Dresden, Leuven (Belgien) und Orsay (Frankreich) beteiligt. Die Neutronensternrechnungen wurden an der Université Libre de Bruxelles (Belgien) durchgeführt.

Weitere Informationen
Plumbing Neutron Stars to New Depths with the Binding Energy of the Exotic Nuclide 82Zn
R. N. Wolf, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, N. Chamel, S. Goriely, F. Herfurth, M. Kowalska, S. Kreim , D. Lunney, V. Manea, E. Minaya Ramirez, S. Naimi, D. Neidherr, M. Rosenbusch, L. Schwei-khard, J. Stanja, F. Wienholtz, K. Zuber, Phys. Rev. Lett. 110, 041101 (2013)

DOI: 10.1103/PhysRevLett.110.041101

Ansprechpartner

Dipl.-Phys. Robert. N. Wolf und Prof. Dr. Lutz Schweikhard
Institut für Physik der Universität Greifswald
Felix-Hausdorff-Straße 6, 17487 Greifswald
Telefon 03834 86-4700
wolf@uni-greifswald.de
lschweik@physik.uni-greifswald.de
http://:www6.physik.uni-greifswald.de/index.html
Sprecher der ISOLTRAP-Kollaboration
Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon 06221 516850
klaus.blaum@mpi-hd.mpg.de
http://www.mpi-hd.mpg.de/blaum/index.de.html
Leiterin der ISOLTRAP-Gruppe am CERN
Dr. Susanne Kreim
CERN, bat. 3-1-070, CH-1211 Genf 23, Schweiz
Telefon +41 22 7672646
susanne.waltraud.kreim@cern.ch
http://isoltrap.web.cern.ch/

Jan Meßerschmidt | idw
Weitere Informationen:
http://www.uni-greifswald.de
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.041101
http://www.mpi-hd.mpg.de/blaum/index.de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie