Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker aus Stuttgart und Kaiserslautern erzielen Quantensprung in der Nanosensorik - Aus dunkel mach hell

06.07.2009
Metalle reflektieren Licht, das kennt jeder, der in einen Spiegel schaut. Aber Metalle können Licht auch verschlucken.

Dieser Effekt ist weniger bekannt und wird zum Beispiel benutzt, um farbige Kirchenfenster herzustellen. Die leuchtenden Farben stammen von winzig kleinen Gold- oder Silberteilchen in der Glasmasse, heute spricht man von Metall-Nanoteilchen.

Schon die alten Römer verstanden es, die Farben zu ändern, indem sie die Menge des zugesetzten Metalls und die Dauer des Schmelzens veränderten. Die Zusammensetzung und Größe der Teilchen kann deren optischen Eigenschaften also deutlich verändern, doch stets werden die Teilchen das Licht entweder verschlucken oder reflektieren.

Mit dieser jahrhundertealten Erkenntnis haben Forscher der Universitäten Stuttgart und Kaiserslautern jetzt gebrochen: Den Wissenschaftlern gelang es, eine Gruppe von Goldteilchen durchsichtig zu machen, indem sie drei für sich genommen undurchsichtige Teilchen in einer trickreichen Anordnung nebeneinander legten und aufeinander stapelten. Über die überraschende Entdeckung berichtete die Zeitschrift Nature Materials in ihrer Ausgabe vom 5. Juli 2009*).

Licht ist eine elektromagnetische Welle und kann die Elektronen im Metall ähnlich wie bei einer Schaukel, die angeschubst wird, in Schwingungen versetzen. Und wie die Schaukel aufgrund der Reibung nach einiger Zeit nicht mehr schwingt, geht die Energie des Lichts in das Metallnanoteilchen über und erzeugt durch den elektrischen Widerstand Wärme.

Physiker sagen dazu, dass ein Partikel-Plasmon angeregt und dann gedämpft wird. Dieses Partikel-Plasmon ist eine kollektive Schwingung der Elektronen im Metall. Für ihre Untersuchungen koppelten die Wissenschaftler nun mehrere Schwingungen zusammen. Das ist so, als würde man mehrere Schaukeln mit Gummibändern zusammenbinden.

Die Kunst ist dabei, die Schaukellängen und die verbindenden Gummibänder so auszuwählen, dass die Schaukeln genau entgegengesetzt schwingen. Man spricht dann von einer gegenphasigen Schwingung oder von "destruktiver Interferenz". Dabei kann fast keine Energie an das schwingende System übertragen werden.

Der Trick ist die Anordnung der Teilchen

Damit eine Gruppe von Nanoteilchen das Licht durchlassen kann, dachten sich die Forscher einen Trick aus und ordneten die Teilchen besonders geschickt: Hierzu positionierten sie zwei winzige Metallstangen mit einer Länge von nur 200 Nanometern (Millionstel Millimeter) nebeneinander und eine weitere quer darüber. Der Abstand zwischen den Teilchen beträgt dabei weniger als 100 Nanometer. Diese hochfeinen Strukturen werden mit modernster Nanotechnologie, so genannter Elektronenstrahl-Lithographie, von der Doktorandin Na Liu in der Gruppe von Prof. Harald Giessen am 4. Physikalischen Institut der Universität Stuttgart hergestellt. Die Kaiserslauterer Theoretiker Jürgen Kästel und Michael Fleischhauer berechneten die Form und den Abstand der Strukturen und sagten deren ideale Anordnung vorher. Physikalisch gesprochen besteht der Effekt darin, eine sogenannte breite Dipolresonanz in dem einzelnen Metalldraht an die schmale Quadrupolresonanz des Drahtpaares bei derselben Wellenlänge zu koppeln.

Scheint nun Licht auf eine solche Probe, tritt ein neues Phänomen auf: Bei einer ganz bestimmten Wellenlänge lässt die gesamte Struktur das Licht fast komplett durch! Diese Wellenlänge gehört zu einer bestimmten Farbe, und das Fenster im Lichtspektrum ist sehr schmal innerhalb einer breiten Absorption. Die Forscher vergleichen diesen Effekt mit einem klassischen Analogon der sogenannten elektromagnetisch-induzierten Transparenz. Die Idee dazu stammt von dem Atomphysiker Prof. Tilman Pfau vom 1. Physikalischen Institut der Universität Stuttgart, der ebenfalls Mitglied des Forscherteams ist.

Mit dieser Entdeckung, so schreibt Prof. Stefan Maier vom berühmten Imperial College in London in einem Kommentar in der Zeitschrift Nature Materials, erzielte das Forscherteam aus Stuttgart und Kaiserslautern einen revolutionären Durchbruch auf dem Gebiet der plasmonischen Sensorik. Denn frühere Forschergruppen, die kleine Metallteilchen für die Nanosensorik eingesetzt haben, waren durch die strahlende Dämpfung limitiert. Dieser Effekt kommt dadurch zustande, dass die schwingenden Elektronen in den Metallnanoteilchen nicht nur durch den elektrischen Widerstand gedämpft werden, sondern auch wie eine kleine Antenne elektromagnetische Strahlung aussenden, die ebenfalls zu einem Energieverlust führt. Dies führt dazu, dass die lokalisierten Partikelplasmon-Resonanzen, die man bisher für die Sensorik kleinster Flüssigkeitsmengen oder sogar weniger Moleküle eingesetzt hat, relativ breit waren. Diese Resonanzen verschieben sich leicht, wenn man ein Gas, eine Flüssigkeit, oder Moleküle in die direkte Umgebung der Nanoteilchen bringt. Bei breiten Resonanzen lässt sich die Verschiebung jedoch nicht so leicht detektieren.

Hoffnung auf neuartige molekulare Sensoren
Bei der von der Gruppe um Prof. Giessen entwickelten neuen Struktur entfällt der Energieverlust aufgrund der elektromagnetischen Strahlung, und das Team zeigt sogar einen Weg auf, um die noch vorhandene nichtstrahlende Dämpfung im Metall weiter zu senken. Aufgrund der schmalen Resonanz wird der sogenannte LSPR (localized surface plasmon resonance)-Sensor deutlich empfindlicher sein. Mithilfe dieser Technologie, so die Hoffnung, kann man künftig ganz neuartige molekulare Sensoren bauen, die kleinste Flüssigkeitsmengen, vielleicht sogar einzelne Moleküle, aufspüren können. Auch die Speicherung von Lichtsignalen bei der optischen Datenübertragung durch "langsames Licht" wäre ein möglicher Einsatzbereich. Und vielleicht könnte das alte Problem der Verluste bei den Metamaterialien gelöst werden, die kürzlich für Furore auf den Gebieten des negativen Brechungsindex und der optischen Tarnkappen gesorgt haben. Eine Gruppe aus den USA und Griechenland ist dabei, die neuen Strukturen aus Stuttgart für wesentlich bessere und verlustarme Metamaterialien einzusetzen.
*) Nature Materials - http://dx.doi.org/10.1038/NMAT2495
Weitere Informationen bei Prof. Harald Giessen, 4. Physikalisches Institut,
Tel: 0711/685-65110, e-mail: giessen@physik.uni-stuttgart.de, www.pi4.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/
http://dx.doi.org/10.1038/NMAT2495

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie