Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker der Saar-Uni entwickelt Modell, wie sich lange Objekte maximal zusammenknüllen lassen

19.06.2017

Die optimale Packung von lang gestreckten Objekten in engen Kapseln beschäftigt Naturwissenschaftler und Ingenieure schon seit geraumer Zeit. Wie effektiv sich quasi-eindimensionale Objekte zufällig zusammenfalten, hat nun ein internationales Physiker-Team untersucht. Zu ihnen gehört auch Dr. Reza Shaebani aus der Arbeitsgruppe um Professor Ludger Santen. Er entwickelte ein theoretisches Modell zum Verdichtungsprozess von Drähten. Die Studie wurde in Nature Communications veröffentlicht.

Seit Johannes Keplers Hypothese über die effektivste Methode, Kanonen auf einem Schlachtschiff zu stapeln, haben Wissenschaftler über die maximal erreichbare Verdichtung von Objekten nachgegrübelt. Wundersamer Weise befindet sich auch unser gesamtes Erbgut in Form eines meterlangen DNA-Stranges dicht gepackt im winzigen Zellkern jeder Körperzelle.


Drähte können sich auf unterschiedliche Art und Weise zusammenknüllen – von sehr geordnet bis sehr ungeordnet. Geordnete Zustände (li) sind dichter gepackt als unordentliche Zustände (re).

Shaebani, Saar-Uni

Den Verdichtungsprozess von quasi-eindimensionalen Objekten – wie kettenförmigen DNA-Molekülen oder Drähten – konnten jetzt Physiker der Universität Amsterdam, dem iranischen Institute for Advanced Studies in Basic Sciences (IASBS) und der Universität des Saarlandes anhand von Experimenten und einem theoretischen Modell genauer beschreiben.

In ihren Versuchen verstauten die niederländischen Forscher unterschiedlich dicke Plastik-Drähte mit variabler Elastizität und Reibung in einer runden Kapsel. Um zu erfassen, wie stark sich die Drähte zusammenknüllen, wurde die jeweils im Endzustand erreichte „Packungsdichte“ gemessen.

Parallel dazu gelang es dem promovierten Saarbrücker Physiker Reza Shaebani, den Verdichtungsprozess mithilfe eines theoretischen Modells zu beschreiben, das für stark ungeordnete Systeme zu den gleichen Ergebnissen führte. Es berücksichtigt die Dicke des Drahts, seine Biegsamkeit und die Fähigkeit der Stränge, gut aneinander vorbeizugleiten. Der Vorteil seines Modells liegt darin, dass es weitaus weniger rechenaufwändig ist als Vorgängermodelle.

„Wie erwartet, bestimmen die Eigenschaften des Drahtes die Effektivität des Verdichtungsprozesses“, berichtet Reza Shaebani. Die Studie habe aber auch einige überraschende Ergebnisse hervorgebracht: So seien dünnere Drähte am Ende weniger dicht gepackt als dicke.

„Um die gleiche Dichte zu erreichen, müsste ein dünner Draht länger sein, doch bei zunehmender Länge stehen ihm immer weniger Hohlräume zur Verfügung – das ist ein wechselwirkendes System“, erklärt der Physiker. Je nach Draht-Eigenschaften ändert sich auch die Anordnung der Drähte: Eine unordentliche Knäuelstruktur entsteht dann, wenn der Draht wenig plastisch ist und wenn die Reibung zwischen den Strängen hoch ist.

Die Studie liefert einen neuen Einblick in die Mechanismen, die dem „Verknüllen“ von Drähten mit plastischen und elastischen Eigenschaften zugrunde liegen. So können die untersuchten elastoplastischen Drähte als Modellsysteme für DNA-Moleküle und andere Biopolymere dienen. Dies könnte beispielsweise zu innovativen Behandlungsmethoden von Arterienerweiterungen (Aneurysmen) führen. Potenzielle Bedeutung haben die Ergebnisse auch für industrielle Prozesse, bei denen man oft am umgekehrten Prozess, dem Entwirren von Drähten, interessiert ist.

Das Projekt wurde durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Sonderforschungsbereichs 1027 an der Universität des Saarlandes unterstützt.
Weitere Infos zum Sonderforschungsbereich: https://idw-online.de/en/news663669
Link zum SFB 1027: http://www.sfb1027.uni-saarland.de/

Veröffentlichung:
M. Reza Shaebani, Javad Najafi, Ali Farnudi, Daniel Bonn and Mehdi Habibi: Compaction of quasi-one-dimensional elastoplastic materials. Nature Communications 8, 15568 (2017), DOI: 10.1038/ncomms15568
https://www.nature.com/articles/ncomms15568

Kontakt:
Dr. Reza Shaebani
Tel.: (0)681 302-57416
E-Mail: shaebani@lusi.uni-sb.de

Gerhild Sieber | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: DFG Draht Elastizität Hohlräume Physiker Reibung Verdichtung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit