Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker der Saar-Uni entwickelt Modell, wie sich lange Objekte maximal zusammenknüllen lassen

19.06.2017

Die optimale Packung von lang gestreckten Objekten in engen Kapseln beschäftigt Naturwissenschaftler und Ingenieure schon seit geraumer Zeit. Wie effektiv sich quasi-eindimensionale Objekte zufällig zusammenfalten, hat nun ein internationales Physiker-Team untersucht. Zu ihnen gehört auch Dr. Reza Shaebani aus der Arbeitsgruppe um Professor Ludger Santen. Er entwickelte ein theoretisches Modell zum Verdichtungsprozess von Drähten. Die Studie wurde in Nature Communications veröffentlicht.

Seit Johannes Keplers Hypothese über die effektivste Methode, Kanonen auf einem Schlachtschiff zu stapeln, haben Wissenschaftler über die maximal erreichbare Verdichtung von Objekten nachgegrübelt. Wundersamer Weise befindet sich auch unser gesamtes Erbgut in Form eines meterlangen DNA-Stranges dicht gepackt im winzigen Zellkern jeder Körperzelle.


Drähte können sich auf unterschiedliche Art und Weise zusammenknüllen – von sehr geordnet bis sehr ungeordnet. Geordnete Zustände (li) sind dichter gepackt als unordentliche Zustände (re).

Shaebani, Saar-Uni

Den Verdichtungsprozess von quasi-eindimensionalen Objekten – wie kettenförmigen DNA-Molekülen oder Drähten – konnten jetzt Physiker der Universität Amsterdam, dem iranischen Institute for Advanced Studies in Basic Sciences (IASBS) und der Universität des Saarlandes anhand von Experimenten und einem theoretischen Modell genauer beschreiben.

In ihren Versuchen verstauten die niederländischen Forscher unterschiedlich dicke Plastik-Drähte mit variabler Elastizität und Reibung in einer runden Kapsel. Um zu erfassen, wie stark sich die Drähte zusammenknüllen, wurde die jeweils im Endzustand erreichte „Packungsdichte“ gemessen.

Parallel dazu gelang es dem promovierten Saarbrücker Physiker Reza Shaebani, den Verdichtungsprozess mithilfe eines theoretischen Modells zu beschreiben, das für stark ungeordnete Systeme zu den gleichen Ergebnissen führte. Es berücksichtigt die Dicke des Drahts, seine Biegsamkeit und die Fähigkeit der Stränge, gut aneinander vorbeizugleiten. Der Vorteil seines Modells liegt darin, dass es weitaus weniger rechenaufwändig ist als Vorgängermodelle.

„Wie erwartet, bestimmen die Eigenschaften des Drahtes die Effektivität des Verdichtungsprozesses“, berichtet Reza Shaebani. Die Studie habe aber auch einige überraschende Ergebnisse hervorgebracht: So seien dünnere Drähte am Ende weniger dicht gepackt als dicke.

„Um die gleiche Dichte zu erreichen, müsste ein dünner Draht länger sein, doch bei zunehmender Länge stehen ihm immer weniger Hohlräume zur Verfügung – das ist ein wechselwirkendes System“, erklärt der Physiker. Je nach Draht-Eigenschaften ändert sich auch die Anordnung der Drähte: Eine unordentliche Knäuelstruktur entsteht dann, wenn der Draht wenig plastisch ist und wenn die Reibung zwischen den Strängen hoch ist.

Die Studie liefert einen neuen Einblick in die Mechanismen, die dem „Verknüllen“ von Drähten mit plastischen und elastischen Eigenschaften zugrunde liegen. So können die untersuchten elastoplastischen Drähte als Modellsysteme für DNA-Moleküle und andere Biopolymere dienen. Dies könnte beispielsweise zu innovativen Behandlungsmethoden von Arterienerweiterungen (Aneurysmen) führen. Potenzielle Bedeutung haben die Ergebnisse auch für industrielle Prozesse, bei denen man oft am umgekehrten Prozess, dem Entwirren von Drähten, interessiert ist.

Das Projekt wurde durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Sonderforschungsbereichs 1027 an der Universität des Saarlandes unterstützt.
Weitere Infos zum Sonderforschungsbereich: https://idw-online.de/en/news663669
Link zum SFB 1027: http://www.sfb1027.uni-saarland.de/

Veröffentlichung:
M. Reza Shaebani, Javad Najafi, Ali Farnudi, Daniel Bonn and Mehdi Habibi: Compaction of quasi-one-dimensional elastoplastic materials. Nature Communications 8, 15568 (2017), DOI: 10.1038/ncomms15568
https://www.nature.com/articles/ncomms15568

Kontakt:
Dr. Reza Shaebani
Tel.: (0)681 302-57416
E-Mail: shaebani@lusi.uni-sb.de

Gerhild Sieber | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: DFG Draht Elastizität Hohlräume Physiker Reibung Verdichtung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics