Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker beobachten erstmals Sonnenenergie bei ihrer Entstehung

28.08.2014

Zum ersten Mal in der Geschichte der Sonnenforschung ist es Wissenschaftlern gelungen, die Sonnenenergie im Moment ihrer Produktion im Sonneninneren zu messen.

Physiker der Borexino-Kollaboration beobachteten im italienischen Gran-Sasso-Untergrundlabor erstmals diejenigen Neutrinos direkt, die bei der Verschmelzung zweier Wasserstoffkerne und der damit einhergehenden Bildung von schwerem Wasserstoff entstehen. Ihre Ergebnisse stellen die Forscher, darunter Physiker der Technischen Universität München (TUM), in der aktuellen Ausgabe von "Nature" vor.


Die Bildkombo zeigt den Borexino-Detektor und die Sonne.

(Verwendung des Bildes nur in Zusammenhang mit der Pressemitteilung unter unter Nennung des Copyrights)

Borexino Collaboration

15 Millionen Grad Celsius – so heiß ist es im Inneren unserer Sonne. Dort laufen verschiedene Fusionsreaktionen ab. 99 Prozent der Energie entstehen durch einen Fusionszyklus, bei dem zu Beginn zwei Wasserstoffatome zu einem Atomkern von schwerem Wasserstoff verschmelzen. In diesem Zyklus wird die Energie freigesetzt, die die Sonne zum Leuchten bringt (Sonnenstrahlung). Es entstehen außerdem elektrisch neutrale Elementarteilchen, die Neutrinos.

Strahlung erreicht Oberfläche erst nach über hunderttausend Jahren

Bisherige Analysen der Sonnenenergie beruhen auf Messungen der Sonnenstrahlung. Im Durchschnitt braucht diese jedoch über hunderttausend Jahre, um aus dem dichten Sonneninneren an deren Oberfläche zu gelangen. Das bedeutet, die errechneten Werte entsprechen der Energie, die über hunderttausend Jahre zuvor im Inneren der Sonne freigesetzt wurde.

Ganz anders verhalten sich die Neutrinos: Weil Neutrinos als elektrisch neutrale Elementarteilchen mit anderer Materie kaum in Wechselwirkung geraten und sich deshalb frei bewegen können, verlassen sie auch das Sonneninnere wenige Sekunden nach ihrer Erzeugung und erreichen bereits nach etwa acht Minuten die Erde.

Die gleichen Eigenschaften, die es den Teilchen ermöglichen, das Sonneninnere so schnell zu verlassen, machen es aber auch extrem schwierig, die Neutrinos aus der für die Sonnenenergie entscheidenden Kernreaktion zu messen.

"Die jetzt veröffentlichte Beobachtung konnte nur gelingen, weil Borexino weltweit der empfindlichste Detektor ist und wir Störungen durch Strahlung und andere kosmische Teilchen extrem reduzieren konnten", sagt Prof. Dr. Stefan Schönert. "Neben Sonnenneutrinos können wir daher auch Neutrinos aus dem Erdinneren beobachten und mithilfe dieser Daten geophysikalische Modelle testen", fügt Prof. Dr. Lothar Oberauer hinzu. Beide Wissenschaftler arbeiten am TUM-Lehrstuhl für Experimentelle Astroteilchenphysik.

Energiefreisetzung im Sonneninneren seit langem unverändert

Die neuen Ergebnisse ermöglichen es zum ersten Mal, experimentell nachzuweisen, dass die Energiefreisetzung im Sonneninneren seit sehr langer Zeit unverändert ist. Dazu verglichen die Forscher die Werte der aktuellen Sonnenenergie, die nun mithilfe der neuen Methode gemessen werden kann, mit denen der Sonnenenergie von vor über hunderttausend Jahren, die sich aus der Sonnenstrahlung berechnen lässt. Das Ergebnis des Vergleichs steht im Einklang mit aktuellen theoretischen Sonnenmodellen.

Die Wissenschaftler der Borexino-Kollaboration haben auch weiterhin ehrgeizige Pläne: In den kommenden vier Jahren sollen die bisherigen Messungen weiter verbessert und neue Neutrino-Beobachtungen durchgeführt werden. Insbesondere wird derzeit ein neues Experiment vorbereitet, um nach neuen Teilchen, sogenannten sterilen Neutrinos, zu suchen. Ihre Existenz hätte fundamentale Auswirkungen für die Teilchenphysik, Astrophysik und Kosmologie.

Über das Projekt:
Das Borexino-Experiment ist im italienischen Gran-Sasso-Untergrundlabor rund 1400 Meter unter der Erde installiert und dient primär der Beobachtung von Neutrinos. Borexino ist eine Kooperation von Wissenschaftlern aus Italien, Deutschland, Frankreich, Polen, den USA und Russland. Aus Deutschland sind Gruppen der Technischen Universität München, des Max-Planck-Instituts für Kernphysik in Heidelberg, der Universitäten Mainz und Hamburg, sowie der Technischen Universität Dresden beteiligt. Einer der Autoren und Mitinitiator des Borexino Experiments ist der emeritierte TUM-Professor Franz von Feilitzsch, der 1994 den Sonderforschungsbereich "Astroteilchenphysik" gründete, wobei das Borexino-Experiment eine zentrale Rolle einnahm.

Originalpublikation:
Borexino Collaboration: Observation of the neutrinos from primary proton-proton fusion in the sun
Nature, 28 August 2014, 2014-04-05260C
DOI: 10.1038/nature13702

Kontakt:

Technische Universität München
Lehrstuhl für experimentelle Physik und Astroteilchenphysik

Prof. Dr. Stefan Schönert
schoenert@ph.tum.de

Prof. Dr. Lothar Oberauer
oberauer@ph.tum.de

Pressestelle der TUM:
presse@tum.de
+49(0)8928910519

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher verwandeln Diamant in Graphit
24.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen
24.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher verwandeln Diamant in Graphit

24.11.2017 | Physik Astronomie

Dinner in the Dark – ein delikates Wechselspiel der Mikroorganismen

24.11.2017 | Biowissenschaften Chemie

Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

24.11.2017 | Physik Astronomie