Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker beobachten erstmals Sonnenenergie bei ihrer Entstehung

28.08.2014

Zum ersten Mal in der Geschichte der Sonnenforschung ist es Wissenschaftlern gelungen, die Sonnenenergie im Moment ihrer Produktion im Sonneninneren zu messen.

Physiker der Borexino-Kollaboration beobachteten im italienischen Gran-Sasso-Untergrundlabor erstmals diejenigen Neutrinos direkt, die bei der Verschmelzung zweier Wasserstoffkerne und der damit einhergehenden Bildung von schwerem Wasserstoff entstehen. Ihre Ergebnisse stellen die Forscher, darunter Physiker der Technischen Universität München (TUM), in der aktuellen Ausgabe von "Nature" vor.


Die Bildkombo zeigt den Borexino-Detektor und die Sonne.

(Verwendung des Bildes nur in Zusammenhang mit der Pressemitteilung unter unter Nennung des Copyrights)

Borexino Collaboration

15 Millionen Grad Celsius – so heiß ist es im Inneren unserer Sonne. Dort laufen verschiedene Fusionsreaktionen ab. 99 Prozent der Energie entstehen durch einen Fusionszyklus, bei dem zu Beginn zwei Wasserstoffatome zu einem Atomkern von schwerem Wasserstoff verschmelzen. In diesem Zyklus wird die Energie freigesetzt, die die Sonne zum Leuchten bringt (Sonnenstrahlung). Es entstehen außerdem elektrisch neutrale Elementarteilchen, die Neutrinos.

Strahlung erreicht Oberfläche erst nach über hunderttausend Jahren

Bisherige Analysen der Sonnenenergie beruhen auf Messungen der Sonnenstrahlung. Im Durchschnitt braucht diese jedoch über hunderttausend Jahre, um aus dem dichten Sonneninneren an deren Oberfläche zu gelangen. Das bedeutet, die errechneten Werte entsprechen der Energie, die über hunderttausend Jahre zuvor im Inneren der Sonne freigesetzt wurde.

Ganz anders verhalten sich die Neutrinos: Weil Neutrinos als elektrisch neutrale Elementarteilchen mit anderer Materie kaum in Wechselwirkung geraten und sich deshalb frei bewegen können, verlassen sie auch das Sonneninnere wenige Sekunden nach ihrer Erzeugung und erreichen bereits nach etwa acht Minuten die Erde.

Die gleichen Eigenschaften, die es den Teilchen ermöglichen, das Sonneninnere so schnell zu verlassen, machen es aber auch extrem schwierig, die Neutrinos aus der für die Sonnenenergie entscheidenden Kernreaktion zu messen.

"Die jetzt veröffentlichte Beobachtung konnte nur gelingen, weil Borexino weltweit der empfindlichste Detektor ist und wir Störungen durch Strahlung und andere kosmische Teilchen extrem reduzieren konnten", sagt Prof. Dr. Stefan Schönert. "Neben Sonnenneutrinos können wir daher auch Neutrinos aus dem Erdinneren beobachten und mithilfe dieser Daten geophysikalische Modelle testen", fügt Prof. Dr. Lothar Oberauer hinzu. Beide Wissenschaftler arbeiten am TUM-Lehrstuhl für Experimentelle Astroteilchenphysik.

Energiefreisetzung im Sonneninneren seit langem unverändert

Die neuen Ergebnisse ermöglichen es zum ersten Mal, experimentell nachzuweisen, dass die Energiefreisetzung im Sonneninneren seit sehr langer Zeit unverändert ist. Dazu verglichen die Forscher die Werte der aktuellen Sonnenenergie, die nun mithilfe der neuen Methode gemessen werden kann, mit denen der Sonnenenergie von vor über hunderttausend Jahren, die sich aus der Sonnenstrahlung berechnen lässt. Das Ergebnis des Vergleichs steht im Einklang mit aktuellen theoretischen Sonnenmodellen.

Die Wissenschaftler der Borexino-Kollaboration haben auch weiterhin ehrgeizige Pläne: In den kommenden vier Jahren sollen die bisherigen Messungen weiter verbessert und neue Neutrino-Beobachtungen durchgeführt werden. Insbesondere wird derzeit ein neues Experiment vorbereitet, um nach neuen Teilchen, sogenannten sterilen Neutrinos, zu suchen. Ihre Existenz hätte fundamentale Auswirkungen für die Teilchenphysik, Astrophysik und Kosmologie.

Über das Projekt:
Das Borexino-Experiment ist im italienischen Gran-Sasso-Untergrundlabor rund 1400 Meter unter der Erde installiert und dient primär der Beobachtung von Neutrinos. Borexino ist eine Kooperation von Wissenschaftlern aus Italien, Deutschland, Frankreich, Polen, den USA und Russland. Aus Deutschland sind Gruppen der Technischen Universität München, des Max-Planck-Instituts für Kernphysik in Heidelberg, der Universitäten Mainz und Hamburg, sowie der Technischen Universität Dresden beteiligt. Einer der Autoren und Mitinitiator des Borexino Experiments ist der emeritierte TUM-Professor Franz von Feilitzsch, der 1994 den Sonderforschungsbereich "Astroteilchenphysik" gründete, wobei das Borexino-Experiment eine zentrale Rolle einnahm.

Originalpublikation:
Borexino Collaboration: Observation of the neutrinos from primary proton-proton fusion in the sun
Nature, 28 August 2014, 2014-04-05260C
DOI: 10.1038/nature13702

Kontakt:

Technische Universität München
Lehrstuhl für experimentelle Physik und Astroteilchenphysik

Prof. Dr. Stefan Schönert
schoenert@ph.tum.de

Prof. Dr. Lothar Oberauer
oberauer@ph.tum.de

Pressestelle der TUM:
presse@tum.de
+49(0)8928910519

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Energieträger: Biogene Reststoffe effizienter nutzen

29.03.2017 | Ökologie Umwelt- Naturschutz

Rostocker Forscher wollen Glyphosat „entzaubern“

29.03.2017 | Biowissenschaften Chemie

Quantenkommunikation: Wie man das Rauschen überlistet

29.03.2017 | Physik Astronomie