Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker beobachten erstmals Sonnenenergie bei ihrer Entstehung

28.08.2014

Zum ersten Mal in der Geschichte der Sonnenforschung ist es Wissenschaftlern gelungen, die Sonnenenergie im Moment ihrer Produktion im Sonneninneren zu messen.

Physiker der Borexino-Kollaboration beobachteten im italienischen Gran-Sasso-Untergrundlabor erstmals diejenigen Neutrinos direkt, die bei der Verschmelzung zweier Wasserstoffkerne und der damit einhergehenden Bildung von schwerem Wasserstoff entstehen. Ihre Ergebnisse stellen die Forscher, darunter Physiker der Technischen Universität München (TUM), in der aktuellen Ausgabe von "Nature" vor.


Die Bildkombo zeigt den Borexino-Detektor und die Sonne.

(Verwendung des Bildes nur in Zusammenhang mit der Pressemitteilung unter unter Nennung des Copyrights)

Borexino Collaboration

15 Millionen Grad Celsius – so heiß ist es im Inneren unserer Sonne. Dort laufen verschiedene Fusionsreaktionen ab. 99 Prozent der Energie entstehen durch einen Fusionszyklus, bei dem zu Beginn zwei Wasserstoffatome zu einem Atomkern von schwerem Wasserstoff verschmelzen. In diesem Zyklus wird die Energie freigesetzt, die die Sonne zum Leuchten bringt (Sonnenstrahlung). Es entstehen außerdem elektrisch neutrale Elementarteilchen, die Neutrinos.

Strahlung erreicht Oberfläche erst nach über hunderttausend Jahren

Bisherige Analysen der Sonnenenergie beruhen auf Messungen der Sonnenstrahlung. Im Durchschnitt braucht diese jedoch über hunderttausend Jahre, um aus dem dichten Sonneninneren an deren Oberfläche zu gelangen. Das bedeutet, die errechneten Werte entsprechen der Energie, die über hunderttausend Jahre zuvor im Inneren der Sonne freigesetzt wurde.

Ganz anders verhalten sich die Neutrinos: Weil Neutrinos als elektrisch neutrale Elementarteilchen mit anderer Materie kaum in Wechselwirkung geraten und sich deshalb frei bewegen können, verlassen sie auch das Sonneninnere wenige Sekunden nach ihrer Erzeugung und erreichen bereits nach etwa acht Minuten die Erde.

Die gleichen Eigenschaften, die es den Teilchen ermöglichen, das Sonneninnere so schnell zu verlassen, machen es aber auch extrem schwierig, die Neutrinos aus der für die Sonnenenergie entscheidenden Kernreaktion zu messen.

"Die jetzt veröffentlichte Beobachtung konnte nur gelingen, weil Borexino weltweit der empfindlichste Detektor ist und wir Störungen durch Strahlung und andere kosmische Teilchen extrem reduzieren konnten", sagt Prof. Dr. Stefan Schönert. "Neben Sonnenneutrinos können wir daher auch Neutrinos aus dem Erdinneren beobachten und mithilfe dieser Daten geophysikalische Modelle testen", fügt Prof. Dr. Lothar Oberauer hinzu. Beide Wissenschaftler arbeiten am TUM-Lehrstuhl für Experimentelle Astroteilchenphysik.

Energiefreisetzung im Sonneninneren seit langem unverändert

Die neuen Ergebnisse ermöglichen es zum ersten Mal, experimentell nachzuweisen, dass die Energiefreisetzung im Sonneninneren seit sehr langer Zeit unverändert ist. Dazu verglichen die Forscher die Werte der aktuellen Sonnenenergie, die nun mithilfe der neuen Methode gemessen werden kann, mit denen der Sonnenenergie von vor über hunderttausend Jahren, die sich aus der Sonnenstrahlung berechnen lässt. Das Ergebnis des Vergleichs steht im Einklang mit aktuellen theoretischen Sonnenmodellen.

Die Wissenschaftler der Borexino-Kollaboration haben auch weiterhin ehrgeizige Pläne: In den kommenden vier Jahren sollen die bisherigen Messungen weiter verbessert und neue Neutrino-Beobachtungen durchgeführt werden. Insbesondere wird derzeit ein neues Experiment vorbereitet, um nach neuen Teilchen, sogenannten sterilen Neutrinos, zu suchen. Ihre Existenz hätte fundamentale Auswirkungen für die Teilchenphysik, Astrophysik und Kosmologie.

Über das Projekt:
Das Borexino-Experiment ist im italienischen Gran-Sasso-Untergrundlabor rund 1400 Meter unter der Erde installiert und dient primär der Beobachtung von Neutrinos. Borexino ist eine Kooperation von Wissenschaftlern aus Italien, Deutschland, Frankreich, Polen, den USA und Russland. Aus Deutschland sind Gruppen der Technischen Universität München, des Max-Planck-Instituts für Kernphysik in Heidelberg, der Universitäten Mainz und Hamburg, sowie der Technischen Universität Dresden beteiligt. Einer der Autoren und Mitinitiator des Borexino Experiments ist der emeritierte TUM-Professor Franz von Feilitzsch, der 1994 den Sonderforschungsbereich "Astroteilchenphysik" gründete, wobei das Borexino-Experiment eine zentrale Rolle einnahm.

Originalpublikation:
Borexino Collaboration: Observation of the neutrinos from primary proton-proton fusion in the sun
Nature, 28 August 2014, 2014-04-05260C
DOI: 10.1038/nature13702

Kontakt:

Technische Universität München
Lehrstuhl für experimentelle Physik und Astroteilchenphysik

Prof. Dr. Stefan Schönert
schoenert@ph.tum.de

Prof. Dr. Lothar Oberauer
oberauer@ph.tum.de

Pressestelle der TUM:
presse@tum.de
+49(0)8928910519

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode für die Datenübertragung mit Licht
29.05.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hält die Klebung?

29.05.2017 | Materialwissenschaften

Vom Edge- bis zum Cloud-Datacenter - Rittal zeigt in Monaco innovative Lösungen für Datacenter

29.05.2017 | Informationstechnologie

„BioFlexRobot“: Weiche Gelenke machen Roboter sicherer

29.05.2017 | Energie und Elektrotechnik