Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optische Kontrolle des Magnetismus

13.03.2012
Internationales Forscherteam misst magnetische Schaltvorgänge im Femtosekundenbereich und beantwortet grundlegende Frage des Magnetismus

Magnetische Schaltvorgänge bilden die Grundlage der Informationsverarbeitung und -speicherung. Magnetische Medien speichern Daten in winzigen magnetischen Bereichen, die bisher meist durch Magnetpulse eingeschrieben werden. Lichtpulse könnten diese Aufgabe wesentlich schneller erledigen. Solche Pulse lassen sich heute schon mit einer Dauer von weniger als einer Billionstel Millisekunde (10-15 Sekunden) herstellen.

Einen entscheidenden Beitrag zum besseren Verständnis, wie sich magneto-optisches Schalten kontrollieren lässt, liefert nun ein internationales Forscherteam. Die Physiker des Forschungszentrums Jülich, des Forschungszentrums OPTIMAS in Kaiserslautern sowie der Universität von Colorado und des National Institut of Standards and Technology im US-amerikanischen Boulder berichten davon in der aktuellen Ausgabe der renommierten Fachzeitschrift „PNAS“.

Normalerweise reagieren die Elementarmagnete eines magnetischen Metalls oder einer Legierung nicht unabhängig von einander; Physiker nennen die dazu notwendige Kraft Austauschkopplung.

Sie äußert sich zum Beispiel darin, dass Eisen seine magnetischen Eigenschaften bei 768 Grad Celsius verliert, Nickel schon bei 360 Grad, eine Legierung beider Komponenten, genannt Permalloy, dagegen bei 580 Grad. Ungeklärt war bisher die Frage, ob in einer Legierung zweier magnetischer Metalle die beteiligten magnetischen Elemente auf sehr kurzen Zeitskalen unterschiedliche magnetische Eigenschaften zeigen oder ob sie sich stets synchron verhalten. Das ist nicht nur wissenschaftlich von Interesse, sondern auch für Anwendungen, denn entkoppelte Systeme reagieren schneller als gekoppelte.

Den Forschern ist es nun gelungen, ein kurzzeitig asynchrones Verhalten der beiden magnetischen Elemente Fe und Ni in Permalloy festzustellen. Sie sind überzeugt, dass diese Entdeckung wegweisend ist für zukünftige Untersuchungen der Spindynamik in komplexen magnetischen Materialien und dass es dadurch gelingen kann, magnetische Schaltvorgänge zukünftig deutlich zu beschleunigen.

Möglich wurde der Nachweis durch eine selbstentwickelte Methode, mit der die Wissenschaftler magnetische Schaltprozesse erstmals mit einer Zeitauflösung von wenigen Femtosekunden (Billionstel Millisekunden) beobachten konnten. Sie erhitzten Permalloy mit ultrakurzen Laserpulsen und zeigten, dass seine beiden Bestandteile darauf zeitlich versetzt reagieren: Das Nickel verliert erst 18 Femtosekunden nach dem Eisen seine magnetischen Eigenschaften. Der Zeitversatz entspricht dabei in etwa der Energie der oben erwähnten Austauschwechselwirkung (Energie-Zeit-Äquivalent), der wesentlichen physikalischen Ursache für den Magnetismus.

Der Versuchsaufbau ist ein so genanntes „Pump-Probe-Experiment“. Dabei lösen die Forscher die Entmagnetisierung der Probe durch einen Puls aus infrarotem Laserlicht von 25 Femtosekunden Dauer aus. Mit weiteren Pulsen aus weichem Röntgen-Licht von weniger als zehn Femtosekunden Dauer, erzeugt mit einer so genannten Hohe-Harmonischen Lichtquelle, messen sie die magnetische Reaktion, die als Spektrum mit einer CCD-Kamera ausgelesen wird. Unter Experten war zunächst strittig, ob bei einem solchen Messaufbau nicht optische Effekte die Ergebnisse verfälschen könnten. Dies konnten die Forscher aber ausschließen, wie sie kürzlich in der Fachzeitschrift Physical Review X erläuterten.

Originalveröffentlichungen:
Probing the timescale of the exchange interaction in a ferromagnetic alloy
Mathias et al.
PNAS Early Edition (EE), week of March 12, 2012
DOI: 10.1073/pnas.1201371109
Ultrafast Demagnetization Measurements Using Extreme Ultraviolet Light: Comparison of Electronic and Magnetic Contributions
Chan La-O-Vorakiat et al.
Physical Review X 2, 011005 (2012)
DOI: 10.1103/PhysRevX.2.011005
Viewpoint: Spin-Sensitive Optics
Jean-Yves Bigot
Physics 5, 11 (2012)
DOI: 10.1103/Physics.5.11
Ansprechpartner:
Prof. Dr. Claus M. Schneider, Forschungszentrum Jülich, Peter Grünberg Institut, Elektronische Eigenschaften, Tel. 02461 61-4428, E-Mail: c.m.schneider@fz-juelich.de
Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich, Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de
Weitere Informationen:
Forschungszentrum Jülich: www.fz-juelich.de
TU Kaiserslautern und Forschungszentrum OPTIMAS: http://optimas.uni-kl.de/, Tel. 0631 205-2322, E-Mail: ma@physik.uni-kl.de
Dipl.-Volkswirt Thomas Jung
Leiter PR und Marketing
TU Kaiserslautern
Gottlieb-Daimler-Straße 47
67663 Kaiserslautern
Tel.: 0631/205-2049
Fax: 0631/205-3658
E-mail: thjung@verw.uni-kl.de

Thomas Jung | TU Kaiserslautern
Weitere Informationen:
http://www.uni-kl.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte