Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Oberflächenphysik: Wie das Wasser tanzen lernt

22.12.2015

Wassermoleküle, die im Kreis tanzen – an der TU Wien wurden die komplizierten Vorgänge auf der Oberfläche einer wichtigen Materialsorte entschlüsselt.

Perowskite sind Materialien, die in Batterien, in Brennstoffzellen oder auch in elektronischen Bauteilen verwendet werden, aber auch in der Natur als Mineral vorkommen. Obwohl sie technologisch so wichtig sind, weiß man über das chemische Verhalten ihrer Oberfläche bis heute sehr wenig.


Tanz der Atome

TU Wien


Ulrike Diebold, Daniel Halwidl, Wernfried Mayr-Schmölzer, Florian Mittendorfer

TU Wien

Dem Team von Prof. Ulrike Diebold (Institut für Angewandte Physik, TU Wien) gelang es nun allerdings mit Hilfe von Rastertunnelmikroskopen und Computerberechnungen eine alte Frage zu klären: Wie verhalten sich Wassermoleküle, die sich auf den Perowskit-Oberflächen anlagern? Nicht nur die äußersten Atome an der Oberfläche, sondern auch tieferliegende Strukturen spielen dabei eine wichtige Rolle. Die Ergebnisse wurden nun im Fachjournal „Nature Materials“ veröffentlicht.

Perowskit zerlegt Wassermoleküle

„Wir studierten Strontium-Ruthenat, einen ganz typischen Vertreter aus der Materialklasse der Perowskite“, sagt Ulrike Diebold. Es handelt sich um eine Kristallstruktur aus Sauerstoff, Strontium und Ruthenium. Die äußerste Schicht wird (wenn man den Kristall in der richtigen Richtung spaltet) nur von Strontium und Sauerstoff-Atomen gebildet, das Ruthenium befindet sich darunter, eingesperrt in eine Box aus Sauerstoff-Atomen.

Wassermoleküle, die auf diese Oberfläche auftreffen, werden in zwei Teile zerlegt: Eines der der Wasserstoffatome wird dem Molekül entrissen und von einem Sauerstoffatom der Kristalloberfläche festgehalten. Übrig bleibt eine OH-Gruppe, die durch eine sogenannte Wasserstoff-Brückenbindung an das entrissene Wasserstoffatom gebunden bleibt.

Genau diese Bindung ist die Ursache für einen merkwürdigen Effekt: Die OH-Gruppe kann sich nicht frei bewegen. Sie hüpft rund um das Wasserstoffatom herum, von Atom zu Atom, wie ein Tänzer, der mit einem Bein immer am selben Ort bleiben muss und bloß mit dem anderen verschiedene Schritte ausprobiert.

„Aufgrund von theoretischen Berechnungen wurde dieser Effekt schon vor einigen Jahren vorhergesagt, wir sind nun die ersten, die das experimentell bestätigen konnten“, sagt Ulrike Diebold. Sie und ihr Team verfügen über langjährige Erfahrung im Abbilden atomarer Prozesse mit Rastertunnelmikroskopen. Wenn man eine bestimmte Region der Kristalloberfläche über längere Zeit immer wieder abbildet, kann man den Tanz der Atome auf der Oberfläche tatsächlich mitfilmen.

Musterbildung: Vom Einzeltänzer über Paarbindung zur Polonaise

Wenn man mehr Wasser auf die Oberfläche aufbringt kann es passieren, dass zwei Tänzer aufeinandertreffen. Dann müssen die OH-Gruppen ihren Tanzschritt ändern: „Die OH-Gruppe kann sich nur dann ungehindert im Kreis bewegen, wenn keiner der unmittelbar benachbarten Plätze besetzt ist“, sagt Florian Mittendorfer, der die Rechnungen gemeinsam mit seinem Dissertanten Wernfried Mayr-Schmölzer durchgeführt hat. Wenn man ein zweites Wassermolekül danebensetzt, hört die Bewegung auf – so als würden einander zwei Tanzpartner treffen und plötzlich eng umschlugen am selben Ort bleiben.

Solche Paare bilden sich allerdings nur an ganz bestimmten Stellen der Oberfläche – und das obwohl die oberste Schicht aus regelmäßig, symmetrisch angeordneten Sauerstoff und Strontium-Atomen besteht und somit alle Stellen gleichwertig sein sollten. Der Grund liegt an der Struktur unmittelbar unterhalb der Oberfläche: hier verbergen sich Oktaeder aus Sauerstoffatomen mit einem Ruthenium-Atom in der Mitte. Diese Oktaeder sind jedoch nicht alle gleich ausgerichtet, sondern ein bisschen zueinander verdreht – abwechselnd im und gegen den Uhrzeigersinn. Dadurch wird die Symmetrie der Oberfläche gebrochen und bestimmte Stellen für die Paarbildung bevorzugt.

„Zunächst bilden sich Paare, dann entstehen ganze Ketten, die immer dichter werden, bis fast die ganze Oberfläche bedeckt ist.“ Was als Einzeltanz begann und zu Paarbindung führte endet bei zunehmender Konzentration von Wassermolekülen als große, geordnete Struktur, vergleichbar mit einer Polonaise, bei der viele Tanzpaare wohlgeordnet hintereinander aufgereiht sind.

Allerdings muss auch bei diesem Prozess an irgendeinem Punkt Schluss sein: Wenn alle Plätze besetzt sind, kann kein zusätzlicher Tänzer mehr auf der Tanzfläche untergebracht werden. „Wenn ein Wassermolekül auf eine Stelle trifft, an der ringsherum bereits alle Plätze von dissoziiertem Wasser besetzt sind, dann kann dieses neue Molekül nicht auch noch von der Oberfläche dissoziiert werden“, erklären die Forscher. Das Wassermolekül bleibt dann ganz, es adsorbiert molekular.

Die neuen Methoden, die vom Forschungsteam an der TU Wien entwickelt und angewandt werden, haben die Oberflächenforschung entscheidend verändert. War man früher auf indirekte Messungen angewiesen, kann man heute – mit dem nötigen Know-How – das Verhalten der einzelnen Atome auf der Oberfläche direkt abbilden und beobachten. Für die moderne Materialforschung eröffnet das ganz neue Möglichkeiten, beispielsweise für die Entwicklung und Verbesserung von Katalysatoren.

Rückfragehinweis:
Prof. Ulrike Diebold
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13425
ulrike.diebold@tuwien.ac.at

Weitere Informationen:

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4512.html Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie