Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In Nullkommanichts durch den Quantentunnel

18.05.2012
Wenn Elektronen die Energie zum Überwinden einer Energiebarriere nicht haben, „tunneln“ sie einfach durch diese Barriere hindurch - in der Quantenwelt nichts Ungewöhnliches.

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) können den Zeitpunkt des Austritts aus der Barriere zum ersten Mal exakt bestimmen und schlussfolgern daraus: Die Zeit, die das Elektron für das Tunneln braucht, ist gleich Null. Sie berichten darüber in der aktuellen Ausgabe von Nature.

In der wundersamen Quantenwelt der Atome und Moleküle gelten klassische physikalische Gesetze nicht mehr. Hier können Elektronen Energiebarrieren überwinden, obwohl sie die nötige Energie dafür nicht haben. Das ist in etwa so, als würde ein Ball immer wieder mit zu wenig Schwung einen Hügel hinauf gerollt – er rollt zurück und kommt nie auf der anderen Seite an. Wäre der Ball ein Elektron und der Hügel ein sogenannter Potenzialwall, bestünde eine gewisse Wahrscheinlichkeit, dass er sich plötzlich doch auf der anderen Seite befände. Eben so, als würde er einen Tunnel durch den Hügel benutzen – daher der Name „Tunneleffekt“.

Aber wie lange braucht das Elektron, um zu tunneln? Prof. Mikhail Ivanov sagt: „Prozesse in der Quantenwelt direkt zu messen, ist sehr schwierig, insbesondere wenn es sich um extrem kurze Zeitskalen handelt.“ Deshalb entwickelten die MBI-Forscher gemeinsam mit Kollegen aus Israel, Kanada und Großbritannien einen Versuchsaufbau, bei dem sich verschiedene physikalische Größen auf einer Zeitskala kürzer als eine Femtosekunde ändern. Durch den Vergleich von Messungen und Berechnungen erhalten sie eine Art Quantenuhr, mit der sie den Moment des Austritts aus der Energiebarriere mit Attosekundengenauigkeit bestimmen können.

Die Forscher beschossen ein Heliumatom mit einem starken Laser und beobachteten das austretende Elektron. Die Anziehungskraft des positiven Atomkerns stellt dabei die zu überwindende Energiebarriere dar. Das Elektron bekam aber nicht genug Energie, weil es sich um ein langsam schwingendes Laserfeld handelte – das Elektron konnte nur tunneln. Mikhail Ivanov beschreibt, wie man sich das vorstellen kann: „Neigt man ein halbvolles Wasserglas langsam hin und her, so dass nichts überläuft, könnte das Wasser nur noch durch die Glaswand tunneln, um zu entkommen.“ Im Gegensatz dazu wäre ein schnell schwingendes Laserfeld wie ein Wasserglas, das man mit hoher Frequenz rüttelt: Irgendwann spritzt das Wasser oben heraus, es bräuchte nicht zu tunneln.

Um den Zeitpunkt des Austritts zu bestimmen, strahlten die Forscher auf das heraus tunnelnde Elektron im rechten Winkel ein schwächeres Laserfeld ein. Dieses schwingt ebenfalls und lenkt so das Elektron abwechselnd in die eine und die andere Richtung ab. Dr. Olga Smirnova erläutert, wie die Forscher damit Rückschlüsse auf die Austrittszeit des Elektrons ziehen konnten: „Wenn Sie aus einem Café treten und zur gegenüberliegenden Bushaltstelle gehen, wäre das schwächere Laserfeld wie ein Wind, der abwechselnd von rechts und links bläst und sie aus der Bahn lenkt. Nur weil wir die Eigenschaften des Windes kennen, also wie stark er bläst und wie häufig er die Richtung wechselt, können wir sagen, wann Sie aus der Tür getreten sind.“

Das Elektron spaziert jedoch nicht einfach davon, sondern kehrt durch die langsamen Schwingungen des beschleunigenden Laserfeldes wie von einem Gummiband gehalten zum Atomkern zurück. Wenn es sich wieder mit dem Atomkern vereinigt, entstehen charakteristische Lichtblitze, die sogenannten Höheren Harmonischen. Über die Messung der Frequenz dieser Höheren Harmonischen, die Länge der Flugbahn des abgelenkten Elektrons und die Eigenschaften des ablenkenden Laserfeldes konnten die Forscher schließlich den exakten Zeitpunkt berechnen, an dem das Elektron aus der Energiebarriere tritt. Sie fanden dabei heraus, dass das Elektron praktisch keine Zeit braucht um zu tunneln. Dies bestätigt frühere Experimente von anderen Wissenschaftlern, die aber einen Versuchsaufbau mit sogenanntem zirkularpolarisiertem Laserlicht gewählt hatten.

Ähnliche Versuche unternahmen die Forscher nun mit Kohlendioxidmolekülen. Im Gegensatz zum Helium, welches zwei Elektronen hat, gibt es beim Kohlendioxid zwanzig Elektronen. Sie können sich in verschiedenen Umlaufbahnen, den Orbitalen, aufhalten. Die tunnelnden Elektronen wiesen eine minimale Zeitverzögerung auf, je nachdem von welchem Orbital sie stammten. Die Experimente geben den Physikern damit zum ersten Mal die Gelegenheit, die Herkunft von austretenden Elektronen zu bestimmen.

Originalarbeit:
Nature, 17. Mai 2012
“Resolving the time when an electron exits a tunneling barrier”
DOI: 10.1038/nature11025
Kontakt:
Prof. Dr. Mikhail Ivanov, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Tel.: +49 30 6392 1210
mivanov@mbi-berlin.de
Dr. Olga Smirnova, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Tel.: +49 30 6392 1356
smirnova@mbi-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.mbi-berlin.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen