Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In Nullkommanichts durch den Quantentunnel

18.05.2012
Wenn Elektronen die Energie zum Überwinden einer Energiebarriere nicht haben, „tunneln“ sie einfach durch diese Barriere hindurch - in der Quantenwelt nichts Ungewöhnliches.

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) können den Zeitpunkt des Austritts aus der Barriere zum ersten Mal exakt bestimmen und schlussfolgern daraus: Die Zeit, die das Elektron für das Tunneln braucht, ist gleich Null. Sie berichten darüber in der aktuellen Ausgabe von Nature.

In der wundersamen Quantenwelt der Atome und Moleküle gelten klassische physikalische Gesetze nicht mehr. Hier können Elektronen Energiebarrieren überwinden, obwohl sie die nötige Energie dafür nicht haben. Das ist in etwa so, als würde ein Ball immer wieder mit zu wenig Schwung einen Hügel hinauf gerollt – er rollt zurück und kommt nie auf der anderen Seite an. Wäre der Ball ein Elektron und der Hügel ein sogenannter Potenzialwall, bestünde eine gewisse Wahrscheinlichkeit, dass er sich plötzlich doch auf der anderen Seite befände. Eben so, als würde er einen Tunnel durch den Hügel benutzen – daher der Name „Tunneleffekt“.

Aber wie lange braucht das Elektron, um zu tunneln? Prof. Mikhail Ivanov sagt: „Prozesse in der Quantenwelt direkt zu messen, ist sehr schwierig, insbesondere wenn es sich um extrem kurze Zeitskalen handelt.“ Deshalb entwickelten die MBI-Forscher gemeinsam mit Kollegen aus Israel, Kanada und Großbritannien einen Versuchsaufbau, bei dem sich verschiedene physikalische Größen auf einer Zeitskala kürzer als eine Femtosekunde ändern. Durch den Vergleich von Messungen und Berechnungen erhalten sie eine Art Quantenuhr, mit der sie den Moment des Austritts aus der Energiebarriere mit Attosekundengenauigkeit bestimmen können.

Die Forscher beschossen ein Heliumatom mit einem starken Laser und beobachteten das austretende Elektron. Die Anziehungskraft des positiven Atomkerns stellt dabei die zu überwindende Energiebarriere dar. Das Elektron bekam aber nicht genug Energie, weil es sich um ein langsam schwingendes Laserfeld handelte – das Elektron konnte nur tunneln. Mikhail Ivanov beschreibt, wie man sich das vorstellen kann: „Neigt man ein halbvolles Wasserglas langsam hin und her, so dass nichts überläuft, könnte das Wasser nur noch durch die Glaswand tunneln, um zu entkommen.“ Im Gegensatz dazu wäre ein schnell schwingendes Laserfeld wie ein Wasserglas, das man mit hoher Frequenz rüttelt: Irgendwann spritzt das Wasser oben heraus, es bräuchte nicht zu tunneln.

Um den Zeitpunkt des Austritts zu bestimmen, strahlten die Forscher auf das heraus tunnelnde Elektron im rechten Winkel ein schwächeres Laserfeld ein. Dieses schwingt ebenfalls und lenkt so das Elektron abwechselnd in die eine und die andere Richtung ab. Dr. Olga Smirnova erläutert, wie die Forscher damit Rückschlüsse auf die Austrittszeit des Elektrons ziehen konnten: „Wenn Sie aus einem Café treten und zur gegenüberliegenden Bushaltstelle gehen, wäre das schwächere Laserfeld wie ein Wind, der abwechselnd von rechts und links bläst und sie aus der Bahn lenkt. Nur weil wir die Eigenschaften des Windes kennen, also wie stark er bläst und wie häufig er die Richtung wechselt, können wir sagen, wann Sie aus der Tür getreten sind.“

Das Elektron spaziert jedoch nicht einfach davon, sondern kehrt durch die langsamen Schwingungen des beschleunigenden Laserfeldes wie von einem Gummiband gehalten zum Atomkern zurück. Wenn es sich wieder mit dem Atomkern vereinigt, entstehen charakteristische Lichtblitze, die sogenannten Höheren Harmonischen. Über die Messung der Frequenz dieser Höheren Harmonischen, die Länge der Flugbahn des abgelenkten Elektrons und die Eigenschaften des ablenkenden Laserfeldes konnten die Forscher schließlich den exakten Zeitpunkt berechnen, an dem das Elektron aus der Energiebarriere tritt. Sie fanden dabei heraus, dass das Elektron praktisch keine Zeit braucht um zu tunneln. Dies bestätigt frühere Experimente von anderen Wissenschaftlern, die aber einen Versuchsaufbau mit sogenanntem zirkularpolarisiertem Laserlicht gewählt hatten.

Ähnliche Versuche unternahmen die Forscher nun mit Kohlendioxidmolekülen. Im Gegensatz zum Helium, welches zwei Elektronen hat, gibt es beim Kohlendioxid zwanzig Elektronen. Sie können sich in verschiedenen Umlaufbahnen, den Orbitalen, aufhalten. Die tunnelnden Elektronen wiesen eine minimale Zeitverzögerung auf, je nachdem von welchem Orbital sie stammten. Die Experimente geben den Physikern damit zum ersten Mal die Gelegenheit, die Herkunft von austretenden Elektronen zu bestimmen.

Originalarbeit:
Nature, 17. Mai 2012
“Resolving the time when an electron exits a tunneling barrier”
DOI: 10.1038/nature11025
Kontakt:
Prof. Dr. Mikhail Ivanov, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Tel.: +49 30 6392 1210
mivanov@mbi-berlin.de
Dr. Olga Smirnova, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Tel.: +49 30 6392 1356
smirnova@mbi-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.mbi-berlin.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher untersuchen Pflanzenkohle als Basis für umweltfreundlichen Langzeitdünger

20.10.2017 | Ökologie Umwelt- Naturschutz

„Antilopen-Parfüm“ hält Fliegen von Kühen fern

20.10.2017 | Agrar- Forstwissenschaften

Aus der Moosfabrik

20.10.2017 | Biowissenschaften Chemie