Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In Nullkommanichts durch den Quantentunnel

18.05.2012
Wenn Elektronen die Energie zum Überwinden einer Energiebarriere nicht haben, „tunneln“ sie einfach durch diese Barriere hindurch - in der Quantenwelt nichts Ungewöhnliches.

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) können den Zeitpunkt des Austritts aus der Barriere zum ersten Mal exakt bestimmen und schlussfolgern daraus: Die Zeit, die das Elektron für das Tunneln braucht, ist gleich Null. Sie berichten darüber in der aktuellen Ausgabe von Nature.

In der wundersamen Quantenwelt der Atome und Moleküle gelten klassische physikalische Gesetze nicht mehr. Hier können Elektronen Energiebarrieren überwinden, obwohl sie die nötige Energie dafür nicht haben. Das ist in etwa so, als würde ein Ball immer wieder mit zu wenig Schwung einen Hügel hinauf gerollt – er rollt zurück und kommt nie auf der anderen Seite an. Wäre der Ball ein Elektron und der Hügel ein sogenannter Potenzialwall, bestünde eine gewisse Wahrscheinlichkeit, dass er sich plötzlich doch auf der anderen Seite befände. Eben so, als würde er einen Tunnel durch den Hügel benutzen – daher der Name „Tunneleffekt“.

Aber wie lange braucht das Elektron, um zu tunneln? Prof. Mikhail Ivanov sagt: „Prozesse in der Quantenwelt direkt zu messen, ist sehr schwierig, insbesondere wenn es sich um extrem kurze Zeitskalen handelt.“ Deshalb entwickelten die MBI-Forscher gemeinsam mit Kollegen aus Israel, Kanada und Großbritannien einen Versuchsaufbau, bei dem sich verschiedene physikalische Größen auf einer Zeitskala kürzer als eine Femtosekunde ändern. Durch den Vergleich von Messungen und Berechnungen erhalten sie eine Art Quantenuhr, mit der sie den Moment des Austritts aus der Energiebarriere mit Attosekundengenauigkeit bestimmen können.

Die Forscher beschossen ein Heliumatom mit einem starken Laser und beobachteten das austretende Elektron. Die Anziehungskraft des positiven Atomkerns stellt dabei die zu überwindende Energiebarriere dar. Das Elektron bekam aber nicht genug Energie, weil es sich um ein langsam schwingendes Laserfeld handelte – das Elektron konnte nur tunneln. Mikhail Ivanov beschreibt, wie man sich das vorstellen kann: „Neigt man ein halbvolles Wasserglas langsam hin und her, so dass nichts überläuft, könnte das Wasser nur noch durch die Glaswand tunneln, um zu entkommen.“ Im Gegensatz dazu wäre ein schnell schwingendes Laserfeld wie ein Wasserglas, das man mit hoher Frequenz rüttelt: Irgendwann spritzt das Wasser oben heraus, es bräuchte nicht zu tunneln.

Um den Zeitpunkt des Austritts zu bestimmen, strahlten die Forscher auf das heraus tunnelnde Elektron im rechten Winkel ein schwächeres Laserfeld ein. Dieses schwingt ebenfalls und lenkt so das Elektron abwechselnd in die eine und die andere Richtung ab. Dr. Olga Smirnova erläutert, wie die Forscher damit Rückschlüsse auf die Austrittszeit des Elektrons ziehen konnten: „Wenn Sie aus einem Café treten und zur gegenüberliegenden Bushaltstelle gehen, wäre das schwächere Laserfeld wie ein Wind, der abwechselnd von rechts und links bläst und sie aus der Bahn lenkt. Nur weil wir die Eigenschaften des Windes kennen, also wie stark er bläst und wie häufig er die Richtung wechselt, können wir sagen, wann Sie aus der Tür getreten sind.“

Das Elektron spaziert jedoch nicht einfach davon, sondern kehrt durch die langsamen Schwingungen des beschleunigenden Laserfeldes wie von einem Gummiband gehalten zum Atomkern zurück. Wenn es sich wieder mit dem Atomkern vereinigt, entstehen charakteristische Lichtblitze, die sogenannten Höheren Harmonischen. Über die Messung der Frequenz dieser Höheren Harmonischen, die Länge der Flugbahn des abgelenkten Elektrons und die Eigenschaften des ablenkenden Laserfeldes konnten die Forscher schließlich den exakten Zeitpunkt berechnen, an dem das Elektron aus der Energiebarriere tritt. Sie fanden dabei heraus, dass das Elektron praktisch keine Zeit braucht um zu tunneln. Dies bestätigt frühere Experimente von anderen Wissenschaftlern, die aber einen Versuchsaufbau mit sogenanntem zirkularpolarisiertem Laserlicht gewählt hatten.

Ähnliche Versuche unternahmen die Forscher nun mit Kohlendioxidmolekülen. Im Gegensatz zum Helium, welches zwei Elektronen hat, gibt es beim Kohlendioxid zwanzig Elektronen. Sie können sich in verschiedenen Umlaufbahnen, den Orbitalen, aufhalten. Die tunnelnden Elektronen wiesen eine minimale Zeitverzögerung auf, je nachdem von welchem Orbital sie stammten. Die Experimente geben den Physikern damit zum ersten Mal die Gelegenheit, die Herkunft von austretenden Elektronen zu bestimmen.

Originalarbeit:
Nature, 17. Mai 2012
“Resolving the time when an electron exits a tunneling barrier”
DOI: 10.1038/nature11025
Kontakt:
Prof. Dr. Mikhail Ivanov, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Tel.: +49 30 6392 1210
mivanov@mbi-berlin.de
Dr. Olga Smirnova, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Tel.: +49 30 6392 1356
smirnova@mbi-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.mbi-berlin.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie