Nimmersatte Sternhaufen: Bonner Studie erklärt rätselhafte Altersstruktur

Ihr Alter ist aber nicht kontinuierlich verteilt, es gibt Altersstufen. Dabei spielt die Masse des Haufens bei seiner ersten Entstehung eine entscheidende Rolle. Nur wenn Sternhaufen mindestens eine Million Sonnenmassen schwer sind, können sie nämlich Gas aus der Galaxie in großen Mengen ansaugen und in ihrem Inneren so verdichten, dass immer wieder neue Sterne entstehen.

„Sterne werden in Sternhaufen geboren“, erläutert Jan Pflamm-Altenburg vom Argelander-Institut für Astronomie der Universität Bonn. Dazu muss sich das Gas der Galaxie, das hauptsächlich aus Wasserstoff und Helium besteht, verdichten. Es entstehen kompakte Gaswolken, die sich lokal immer weiter zusammenballen. So werden in einem Zeitraum von etwa zwei bis drei Millionen Jahren eine ganze Anzahl von Sternen geboren, die räumlich zusammen bleiben. Das restliche Gas verschwindet aus diesem Haufen, weil es durch die dort herrschenden hohen Temperaturen von etwa einer Million Grad Celsius verdrängt wird.

„Das Alter der so gebildeten Sterne kann also nur um ein paar Millionen Jahre variieren“, so Pflamm-Altenburg weiter. „Demnach müssten alle Sternenhaufen aus Sternen etwa gleichen Alters bestehen. Das ist aber bei schweren Kugelsternhaufen nicht der Fall. In ihnen findet man Sterne aus verschiedenen Generationen. Ihr Alter ist nicht etwa kontinuierlich verteilt, sondern es gibt Altersstufen.“ Dieses Phänomen ist schon lange bekannt, aber bisher gab es dafür keine befriedigende Erklärung. Deshalb machte er sich zusammen mit Professor Dr. Pavel Kroupa daran, Lösungen dafür zu finden.

Herausgekommen ist ein analytisches Modell, das dieses Phänomen gut beschreibt: Wenn sich die erste Generation von Sternen gebildet hat und das Gas aus dem Haufen entwichen ist, durchleben die Sterne ihren Entwicklungszyklus. Bei diesem Alterungsprozess entsteht wiederum Gas, das im Sternenhaufen verbleiben kann. Aber nur – und das ist der Knackpunkt – wenn der Haufen mindestens eine kritische Masse von einer Million Sonnenmassen aufweist. Nur dann ist die Gravitation, also die Anziehungskraft des Sternenhaufens, auf das Gas groß genug, um es in seinem Innern gefangen zu halten. Wenn sich der Haufen abgekühlt hat, kann er aufgrund seiner hohen Masse zudem wieder Gas aus seiner Umgebung anziehen. Das passiert etwa nach 50 Millionen Jahren. So kann es allmählich im Innern des dann nur noch etwa 10.000 Grad Celsius warmen Haufens wieder zu einer Gasverdichtung kommen. Diese führt zur Geburt einer zweiten Generation von Sternen. Die Temperatur steigt wieder an, wodurch das restliche Gas verdrängt wird. Bevor also eine dritte Generation Sterne geboren werden kann, muss zunächst wieder der Lebenszyklus der zweiten Sternengeneration durchlebt worden sein. Deshalb kann es auch keine kontinuierliche Altersverteilung von Sternen geben. Mit diesem Modell von Kroupa und Pflamm-Altenburg lässt sich also das Phänomen der gepulsten Alterstruktur schwerer Kugelsternhaufen zum ersten Mal eindeutig erklären.

Die leichteren Sternhaufen bewegen sich zudem überwiegend im äußeren, etwa eine Million Grad heißen Halogas der Milchstraße. Demgegenüber kommen die massereichen Sternhaufen eher in den gasreichen, inneren und damit kälteren Regionen von Scheibengalaxien vor. Hier können sie – wenn die Bedingungen stimmen – immer wieder Gas aus ihrer Umgebung aufsaugen. Wie nimmersatte, galaktische Vielfraße.

Kontakt:
Professor Dr. Pavel Kroupa
Jan Pflamm-Altenburg
Argelander-Institut für Astronomie der Universität Bonn
Telefon: 0228/73-5656
E-Mail: pavel@astro.uni-bonn.de oder jpflamm@astro.uni-bonn.de

Media Contact

Frank Luerweg idw

Weitere Informationen:

http://www.uni-bonn.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Für kostengünstigere, nachhaltigere Akkus

Ultraniedrig konzentrierter Elektrolyt für Lithium-Ionen-Batterien Lithium-Salze machen Akkumulatoren leistungsfähig, aber teuer. Ein ultraniedrig konzentrierter Elektrolyt auf Basis des Lithium-Salzes LiDFOB könnte eine kostengünstige und dabei nachhaltigere Alternative sein. Zellen mit…

Partner & Förderer