Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Materialdesign ermöglicht ungestörte Lichtwellen

10.08.2015

In Materialien, die Licht abschwächen und verstärken können, sind überraschende Arten von Lichtwellen möglich – das zeigen Berechnungen der TU Wien.

Wenn eine Lichtwelle in ein Material eindringt, ändert sie sich normalerweise drastisch. Sie wird gestreut und abgelenkt, und durch die Überlagerung von Lichtwellen kommt es zu einem Muster aus helleren und dunkleren Bereichen.


Eine Welle dringt in ein Material ein: Bei speziell designten nicht-hermitischen Materialien bleibt die Welle unbeeinflusst.

TU Wien


Eine Welle dringt in ein Material ein: Normalerweise kommt es zu komplizierten Wellenüberlagerungen, zu hellen und dunklen Bereichen.

TU Wien

In maßgeschneiderten High-Tech-Materialien, die das Licht lokal verstärken oder abschwächen können, ergeben sich nun neue Möglichkeiten solche Effekte vollständig zu unterdrücken: Wie eine theoretische Arbeit der TU Wien zeigt, ermöglichen diese neuen Materialien ganz besondere Lichtwellen, die im Inneren des Materials an jedem Ort dieselbe Intensität aufweisen - so als gäbe es keinerlei Wellenüberlagerung. Durch diese ungewöhnlichen Eigenschaften könnten sich diese neuartigen Lösungen der Wellengleichung des Lichts technisch nutzen lassen.

Hindernisse verändern die Lichtintensität

Wenn sich eine Lichtwelle gerade und eben durch den freien Raum bewegt, dann kann sie überall dieselbe Intensität haben, ihr Licht ist demnach überall gleich hell. Trifft sie allerdings auf ein Hindernis, dann wird die Welle abgelenkt, das Licht ist danach an manchen Stellen heller, an anderen Stellen dunkler als es ohne Hindernis gewesen wäre. Erst durch solche Überlagerungs- oder Interferenzeffekte können wir Objekte sehen, die selbst kein Licht ausstrahlen.

In den letzten Jahren gab es allerdings immer wieder Experimente mit neuen Materialien, die Lichtwellen auf ganz besondere Weise verändern können: Sie können das Licht lokal verstärken (ähnlich wie das in einem Laser geschieht) oder auch abschwächen (wie in einer Sonnenbrille). „Wenn solche Prozesse möglich sind, muss man die Lichtwelle mathematisch anders beschreiben, als man es in gewöhnlichen, transparenten Materialien tut“, erklärt Prof. Stefan Rotter (Institut für Theoretische Physik, TU Wien). „Wir sprechen dann von sogenannten nicht-hermitischen Medien.“

Eine neue Lösung für die Wellengleichung

Konstantinos Makris und Stefan Rotter entdeckten gemeinsam mit Kollegen aus den USA, dass sich damit neuartige Lösungen der Wellengleichung finden lassen. „Man erhält Lichtwellen, die überall gleich hell sind, wie bei einer ebenen Welle im freien Raum, obwohl die Welle ein stark strukturiertes Material durchdringt“, sagt Konstantinos Makris. „Für die Welle ist das Material in gewissem Sinn unsichtbar, obwohl sie es durchdringt und mit ihm stark wechselwirkt.“

Das neue Konzept der Physiker erinnert an sogenannte „Metamaterialien“, mit denen in den letzten Jahren viel experimentiert wurde. Dabei handelt es sich um strukturierte Materialien, die Licht auf ungewöhnliche Weise ablenken und in bestimmten Fällen um ein Objekt herum führen können, sodass das Objekt wie durch Harry Potters Tarnumhang ("invisibility cloak") unsichtbar gemacht wird.

„Unsere nicht-hermitischen Materialien funktionieren allerdings auf Basis eines anderen Prinzips“, betont Stefan Rotter. „Die Lichtwelle wird nicht außen herumgelenkt, sondern sie durchdringt das Material. Aber der Effekt, den das Material auf die Intensität der Welle hat, wird durch ein genau justiertes Wechselspiel aus Verlust und Verstärkung ausgeglichen.“ Am Ende ist die Welle überall im Raum genauso hell, wie sie ohne das Objekt gewesen wäre.

Bis es tatsächlich gelingt, Objekte herzustellen, die Lichtwellen unberührt passieren lassen, ist noch eine Reihe technischer Details zu lösen – gearbeitet wird daran bereits. Mathematisch ist allerdings nun bewiesen, dass es neben Metamaterialien auch noch einen anderen, äußerst vielversprechenden Pfad gibt, Wellen auf ungewöhnliche Weise zu manipulieren. „In einem gewissen Sinn haben wir mit unserer ersten Arbeit zu diesem Thema eine Tür aufgestoßen, hinter der wir noch eine Vielzahl an neuen Einsichten vermuten“, erklärt Konstantinos Makris.

Rückfragehinweis:
Prof. Stefan Rotter
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13618
stefan.rotter@tuwien.ac.at

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms8257 Originalpublikation in Nature Communications
http://arxiv.org/abs/1503.08986 frei zugängliche Version

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen