Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues astronomisches Phänomen: »Kernschein« gibt Einblicke in früheste Phase der Sterngeburt

24.09.2010
Die Geburt der Sterne liegt buchstäblich im Dunkeln: Tief im Inneren von Gas- und Staubwolken, aus denen kein Licht nach außen dringt, beginnt Materie unter der eigenen Schwerkraft zu kollabieren.

Jetzt hat eine Gruppe von Astronomen im Inneren einer Vielzahl solcher Wolken ein neues astronomisches Phänomen nachweisen können: den Umstand, dass Infrarotlicht an größeren Staubteilchen im Wolkeninneren gestreut wird. Der »Kernschein« liefert Informationen über die frühesten Phasen der Sternentstehung. Die neuen Ergebnisse werden am 24. September 2010 in der Zeitschrift Science veröffentlicht.


Die Molekülwolke CB 244 im Sternbild Cepheus, rund 650 Lichtjahre entfernt. Licht aus dem mittleren Infrarot wird an den größeren Staubteilchen im Wolkeninneren gestreut. Dies ist der in dem Falschfarbenbild dargestellte, neu entdeckte »Kernschein« (»coreshine«). Bild: MPIA

Sterne entstehen, wenn besonders dichte Gebiete kosmischer Gas- und Staubwolken (»Molekülwolken«) unter der eigenen Schwerkraft kollabieren und sich dabei soweit verdichten und aufheizen, dass Kernfusionsreaktionen einsetzen. Auch unsere Sonne ist so entstanden, und die Kernfusionsreaktionen sind für das stete Leuchten unseres Heimatsterns verantwortlich, das Voraussetzung für alles Leben auf der Erde ist. Die in der kollabierenden Wolke enthaltenen Staubteilchen sind das Rohmaterial für die Entstehung von erdähnlichen Planeten um die neu entstandenen Sterne.

Was in den Frühstadien eines solchen Kollapses passiert, ist weitgehend ungeklärt. Jetzt hat ein internationales Forscherteam unter der Leitung von Laurent Pagani (LERMA, Observatoire de Paris) und Jürgen Steinacker (Max-Planck-Institut für Astronomie) ein neuartiges Phänomen entdeckt, das eine Vielzahl von Informationen über eben diese früheste Phase der Stern- und Planetenentstehung verspricht: den »Kernschein« (englisch »coreshine«) der Wolken. Dabei handelt es sich um unsere Galaxie durchflutendes Infrarotlicht, das von Staubteilchen im Inneren solcher Wolken gestreut wird. Das gestreute Licht liefert Hinweise auf die Größe und Dichte der Staubteilchen, das Alter der Wolke, die räumliche Verteilung des Gases, die Entstehung des Rohmaterials für die spätere Bildung von Planeten und chemische Prozesse im Inneren der Wolke.

Die Entdeckung beruht auf Beobachtungen mit dem NASA-Weltraumteleskop SPITZER. Im Februar dieses Jahres hatten Steinacker und Pagani mit Kollegen aus Grenoble und Pasadena bei Untersuchungen der Molekülwolke L 183 im Sternbild Serpens Caput (»Kopf der Schlange«), rund 360 Lichtjahre von uns entfernt, unerwartete Mittelinfrarotstrahlung nachgewiesen, die aus den dichtesten Regionen der Wolke zu stammen schien. Im Vergleich mit aufwändigen Simulationen konnten die Astronomen zeigen, dass es sich um die Streustrahlung größerer Staubteilchen (Durchmesser rund 1 Mikrometer) handeln musste. Die neue Science-Veröffentlichung beschreibt jetzt Nachfolgeuntersuchungen an insgesamt 110 solcher Quellen, die mit Spitzer beobachtet worden waren und zwischen 300 und 1300 Lichtjahre von der Erde entfernt sind. Die Untersuchungen belegen, dass es sich um ein weit verbreitetes astronomisches Phänomen handelt: Kernschein ließ sich in rund der Hälfte der untersuchten Wolken nachweisen und ist auch dort mit den dichtesten Wolkenregionen assoziiert.

Die Entdeckung des Kernscheins motiviert eine Vielzahl neuer Beobachtungsprojekte – sowohl für das Weltraumteleskop Spitzer als auch für das James Webb-Weltraumteleskop, das 2014 gestartet werden soll. Bereits jetzt liefert die neue Beobachtungsart neue Einblicke in das Innere der Geburtsstätten von Sternen: Das unerwartete Vorhandensein größerer Staubteilchen (Durchmesser rund 1 Mikrometer) zeigt, dass Staubteilchen bereits in der Vorphase des Wolkenkollapses verklumpen und dadurch größer werden. Interessant ist auch das Beispiel einer Region im südlichen Sternbild »Segel des Schiffs« (Vela), in deren verschiedenen Wolken kein Kernschein nachweisbar war. Steinacker und seine Kollegen vermuten, dass Sternexplosionen (Supernovae), von denen man weiß, dass sie in diesem Gebiet stattgefunden haben, die größeren Staubteilchen zerstört haben könnten.

Kontakt

Dr. habil. Jürgen Steinacker (Ko-Hauptautor)
Max-Planck-Institut für Astronomie
Tel.: (+33) 476 – 43 02 32
E-Mail: stein@mpia.de
Prof. Dr. Thomas Henning (Koautor)
Max-Planck-Institut für Astronomie
Tel.: 06221 – 528 200
E-Mail: henning@mpia.de
Dr. Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Tel.: 06221 – 528 261
E-Mail: poessel@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen