Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Quantenspeicher in Sicht

18.04.2014

Mit empfindlichen Messungen lassen sich Signale eines einzelnen Ions in einem Kristall registrieren

Als Kandidat für einen Quantenspeicher positioniert sich ein vielversprechendes Material. Einem Team des Max-Planck-Instituts für die Physik des Lichts in Erlangen ist es erstmals gelungen, einzelne Ionen seltener Erden in einem Kristall präzise zu lokalisieren und ihre quantenmechanischen Energiezustände genau zu vermessen.


Speicherkandidat mit leuchtender Zukunft: Max-Planck-Forscher haben mit ausgeklügelter Mikroskopie- und Lasertechnik einzelne Praseodymionen im Kristall eines Yttriumorthosilikats adressiert. Das eröffnet die Möglichkeit, Quanteninformation in diesen Ionen zu speichern, die gegenüber anderen Speicherkandidaten einige Vorteile haben.

© MPI für die Physik des Lichts

Mit Hilfe ausgefeilter Laser- und Mikroskopietechnik haben sie die Position dreifach positiv geladener Praseodymatome (Pr3+) in einem Yttriumorthosilikat auf wenige Nanometer genau bestimmt und ihre schwache Wechselwirkung mit Licht untersucht. Die Arbeit kann einen wichtigen Beitrag für künftige Quantencomputer leisten – denn die untersuchten Ionen eignen sich unter anderem zum Speichern und Verarbeiten von Quanteninformationen.

Weltweit arbeiten zahlreiche Wissenschaftler an Bausteinen für künftige Quantencomputer, mit denen sich Informationen wesentlich schneller als heute verarbeiten lassen. Zu den zentralen Elementen dieser Superrechner gehören Quantensysteme mit atomähnlichen optischen Eigenschaften – darum stehen derzeit Quantenpunkte oder lichterzeugende Defekte („Color Centers“) in Diamanten im Mittelpunkt des Interesses vieler Forscher.

Allerdings sind ihre Eigenschaften nicht optimal für den Einsatz in Quantencomputern: „Manche der Lichtquellen verlieren ihre Leuchtkraft oder flackern auf unkontrollierte Weise“, erklärt Vahid Sandoghdar, der die Abteilung Nanooptik am Max-Planck-Institut für die Physik des Lichts in Erlangen leitet. „Andere werden stark von der Umgebung gestört, in die sie eingebettet sind.“

Forscher sehen die Signale eines einzelnen Ions

Schon lange war bekannt, dass die Ionen Seltener Erden wie Neodym oder Erbium nicht unter solchen Problemen leiden – darum spielen sie heute in Lasern und Laserverstärkern eine zentrale Rolle. Allerdings geben sie nur wenig Licht ab und sind darum sehr schwer zu detektieren. Genau das ist Tobias Utikal, Emanuel Eichhammer und Stephan Götzinger aus Sandoghdars Gruppe in Erlangen nun aber gelungen:

Nach mehr als sechs Jahren intensiver Forschung konnten sie einzelne Ionen des Seltenerdmetalls Praseodym nachweisen, auf wenige Nanometer genau lokalisieren und ihre optischen Eigenschaften mit bisher nie erreichter Genauigkeit vermessen. Mit ihrem Experiment ist es ihnen gelungen, die Signale eines einzelnen Pr3+-Ions zu sehen.

Die dreifach positiv geladenen Ionen waren in winzige Mikro- und Nanokristalle aus Yttriumorthosilikat (YSO) eingebettet. Je nach ihrer Position im Kristall schwankte ihre Energie minimal – sie reagierten auf leicht unterschiedliche Frequenzen. Das nutzten die Wissenschaftler, um mit einem Laser einzelne Ionen in den Kristallen anzuregen und zu beobachten, wie sie die Energie nach einiger Zeit in Form von Lichtstrahlen wieder abgeben.

„Weil die Ionen der Seltenen Erden nicht stark von den thermischen und akustischen Schwingungen des Kristalls beeinflusst werden, sind einige ihrer Energiezustände ungewöhnlich stabil“, sagt Sandoghdar. „Es dauert länger als eine Minute, bevor sie wieder in den Grundzustand übergehen – millionenfach länger als bei den meisten anderen heute untersuchten Quantensystemen.“ Da sich in den verschiedenen Energiezuständen eines Atoms oder Ions Quanteninformation speichern lässt, eignen sich die Pr3+-Ionen beispielsweise als Speicher für Quantencomputer.

In Zukunft sollen die Signale der Ionen noch besser zu sehen sein. Da ein einzelnes Ion im Moment mit weniger als 100 Photonen pro Sekunde antwortet, wollen die Erlanger Wissenschaftler das Praseodym-Signal mit Nano-Antennen und Mikro-Resonatoren um das Hundert- oder Tausendfache verstärken.

Ansprechpartner 

Ph.D., Prof. Vahid Sandoghdar
Max-Planck-Institut für die Physik des Lichts, Erlangen
Telefon: +49 09131 6877-200
Fax: +49 09131 6877-209
E-Mail:vahid.sandoghdar@mpl.mpg.de
 

Originalpublikation

 
Tobias Utikal, Emanuel Eichhammer, Lutz Petersen, Alois Renn, Stephan Götzinger und Vahid Sandoghdar
Nature communications, 11. April 2014; doi:10.1038/ncomms4627

Ph.D., Prof. Vahid Sandoghdar | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8137205/quantenspeicher_praseodymion_kristall

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics