Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Quantenspeicher in Sicht

18.04.2014

Mit empfindlichen Messungen lassen sich Signale eines einzelnen Ions in einem Kristall registrieren

Als Kandidat für einen Quantenspeicher positioniert sich ein vielversprechendes Material. Einem Team des Max-Planck-Instituts für die Physik des Lichts in Erlangen ist es erstmals gelungen, einzelne Ionen seltener Erden in einem Kristall präzise zu lokalisieren und ihre quantenmechanischen Energiezustände genau zu vermessen.


Speicherkandidat mit leuchtender Zukunft: Max-Planck-Forscher haben mit ausgeklügelter Mikroskopie- und Lasertechnik einzelne Praseodymionen im Kristall eines Yttriumorthosilikats adressiert. Das eröffnet die Möglichkeit, Quanteninformation in diesen Ionen zu speichern, die gegenüber anderen Speicherkandidaten einige Vorteile haben.

© MPI für die Physik des Lichts

Mit Hilfe ausgefeilter Laser- und Mikroskopietechnik haben sie die Position dreifach positiv geladener Praseodymatome (Pr3+) in einem Yttriumorthosilikat auf wenige Nanometer genau bestimmt und ihre schwache Wechselwirkung mit Licht untersucht. Die Arbeit kann einen wichtigen Beitrag für künftige Quantencomputer leisten – denn die untersuchten Ionen eignen sich unter anderem zum Speichern und Verarbeiten von Quanteninformationen.

Weltweit arbeiten zahlreiche Wissenschaftler an Bausteinen für künftige Quantencomputer, mit denen sich Informationen wesentlich schneller als heute verarbeiten lassen. Zu den zentralen Elementen dieser Superrechner gehören Quantensysteme mit atomähnlichen optischen Eigenschaften – darum stehen derzeit Quantenpunkte oder lichterzeugende Defekte („Color Centers“) in Diamanten im Mittelpunkt des Interesses vieler Forscher.

Allerdings sind ihre Eigenschaften nicht optimal für den Einsatz in Quantencomputern: „Manche der Lichtquellen verlieren ihre Leuchtkraft oder flackern auf unkontrollierte Weise“, erklärt Vahid Sandoghdar, der die Abteilung Nanooptik am Max-Planck-Institut für die Physik des Lichts in Erlangen leitet. „Andere werden stark von der Umgebung gestört, in die sie eingebettet sind.“

Forscher sehen die Signale eines einzelnen Ions

Schon lange war bekannt, dass die Ionen Seltener Erden wie Neodym oder Erbium nicht unter solchen Problemen leiden – darum spielen sie heute in Lasern und Laserverstärkern eine zentrale Rolle. Allerdings geben sie nur wenig Licht ab und sind darum sehr schwer zu detektieren. Genau das ist Tobias Utikal, Emanuel Eichhammer und Stephan Götzinger aus Sandoghdars Gruppe in Erlangen nun aber gelungen:

Nach mehr als sechs Jahren intensiver Forschung konnten sie einzelne Ionen des Seltenerdmetalls Praseodym nachweisen, auf wenige Nanometer genau lokalisieren und ihre optischen Eigenschaften mit bisher nie erreichter Genauigkeit vermessen. Mit ihrem Experiment ist es ihnen gelungen, die Signale eines einzelnen Pr3+-Ions zu sehen.

Die dreifach positiv geladenen Ionen waren in winzige Mikro- und Nanokristalle aus Yttriumorthosilikat (YSO) eingebettet. Je nach ihrer Position im Kristall schwankte ihre Energie minimal – sie reagierten auf leicht unterschiedliche Frequenzen. Das nutzten die Wissenschaftler, um mit einem Laser einzelne Ionen in den Kristallen anzuregen und zu beobachten, wie sie die Energie nach einiger Zeit in Form von Lichtstrahlen wieder abgeben.

„Weil die Ionen der Seltenen Erden nicht stark von den thermischen und akustischen Schwingungen des Kristalls beeinflusst werden, sind einige ihrer Energiezustände ungewöhnlich stabil“, sagt Sandoghdar. „Es dauert länger als eine Minute, bevor sie wieder in den Grundzustand übergehen – millionenfach länger als bei den meisten anderen heute untersuchten Quantensystemen.“ Da sich in den verschiedenen Energiezuständen eines Atoms oder Ions Quanteninformation speichern lässt, eignen sich die Pr3+-Ionen beispielsweise als Speicher für Quantencomputer.

In Zukunft sollen die Signale der Ionen noch besser zu sehen sein. Da ein einzelnes Ion im Moment mit weniger als 100 Photonen pro Sekunde antwortet, wollen die Erlanger Wissenschaftler das Praseodym-Signal mit Nano-Antennen und Mikro-Resonatoren um das Hundert- oder Tausendfache verstärken.

Ansprechpartner 

Ph.D., Prof. Vahid Sandoghdar
Max-Planck-Institut für die Physik des Lichts, Erlangen
Telefon: +49 09131 6877-200
Fax: +49 09131 6877-209
E-Mail:vahid.sandoghdar@mpl.mpg.de
 

Originalpublikation

 
Tobias Utikal, Emanuel Eichhammer, Lutz Petersen, Alois Renn, Stephan Götzinger und Vahid Sandoghdar
Nature communications, 11. April 2014; doi:10.1038/ncomms4627

Ph.D., Prof. Vahid Sandoghdar | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8137205/quantenspeicher_praseodymion_kristall

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie