Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Materialeffekt koppelt Elektrizität und Magnetismus

26.11.2013
In ganz besonderen Materialien können elektrische und magnetische Schwingungen zu „Elektromagnonen“ gekoppelt werden. An der TU Wien gelang nun ein wichtiger Durchbruch auf diesem Gebiet, auf dem große technologische Hoffnungen ruhen.

Ganze Industriezweige wie die moderne Mikroelektronik beruht auf der Wechselwirkung zwischen Materie und Elektromagnetismus. In maßgeschneiderten Materialien werden elektromagnetische Signale verarbeitet und gespeichert.


Prof. Andrei Pimenov im Optik-Labor
TU Wien

Bisher hat man in der Materialwissenschaft allerdings die elektrische und die magnetische Welt weitgehend voneinander getrennt. Nun zeigt sich: Es gibt Materialien, sogenannte Multiferroika, in denen beides eng zusammenhängt. An der TU Wien wurde nun im Experiment nachgewiesen, dass sich magnetische Eigenschaften mit elektrischen Feldern beeinflussen lassen können. Für Technologien im Hochfrequenzbereich entstehen so ganz neue Möglichkeiten.

Das Beste aus beiden Welten

Dass Elektrizität und Magnetismus eng zusammengehören, ist schon seit langer Zeit klar: Wellen im freien Raum, wie sichtbares Licht oder Handysignale, haben immer sowohl eine elektrische als auch eine magnetische Komponente. Doch bei Materialeigenschaften hatten die beiden Bereiche bisher wenig miteinander zu tun: Es gibt Materialien mit magnetischer Ordnung, die auf äußere Magnetfelder reagieren, und andere Materialien mit elektrischer Ordnung, die von äußeren elektrische Feldern beeinflusst werden.

Ein gewöhnlicher Magnet hat zwar ein magnetisches Feld, aber kein elektrisches Feld. In einem piezoelektrischen Kristall hingegen kann man elektrische Felder erzeugen, aber keine magnetischen. Beides gleichzeitig schien lange unmöglich. „Die beiden Effekte entstehen normalerweise auf unterschiedliche Art“, erklärt Prof. Andrei Pimenov vom Institut für Festkörperphysik der TU Wien. „Magnetische Ordnung kommt von Elektronen, die ihre magnetischen Momente aneinander ausrichten, elektrische Ordnung kommt davon, dass positive und negative elektrische Ladungen an unterschiedlichen Orten sitzen und sich gegeneinander bewegen.“

Elektromagnonen

2006 entdeckte Andrei Pimenov – damals noch an der Universität Augsburg – Hinweise darauf, dass es in bestimmten Materialien Anregungen gibt, die sowohl auf elektrischer als auch auf magnetischer Ordnung beruhen. „Elektromagnonen“ nannte man diese Anregungen, die seither in der Materialwissenschaft heiß diskutiert werden. Nun gelang es Pimenov und seinem Team an der TU Wien, in einem Material aus Dysprosium, Mangan und Sauerstoff (DyMnO3) diese Anregungen gezielt mit einem äußeren elektrischen Feld umzuschalten.

Viele einzelne Elektronen in diesem Material richten bei niedrigen Temperaturen ihre magnetischen Momente aneinander aus: Jedes Elektron hat eine magnetische Richtung, die gegenüber der vom Nachbarn ein bisschen verdreht ist, so bilden sie gemeinsam eine Magnet-Spirale. Diese Spirale kann rechtsherum oder linksherum geführt werden – und genau das lässt sich überraschenderweise durch ein elektrisches Feld steuern und umschalten.

Schwingende Atome, wackelnde Momente

In einem magneto-elektrischen Material sind die Ladungen und magnetischen Momente der Atome miteinander verknüpft. In Dysprosium- Mangan-Oxyd ist dieser Effekt besonders stark: „Wenn die magnetischen Momente der Atome wackeln, dann bewegen auch deren elektrische Ladungen“, erklärt Andrei Pimenov. Im nun verwendeten Material sind magnetische Momente und elektrische Ladungen gleichzeitig in der Schwingung beteiligt, und so lässt sich beides beeinflussen.

Nachgewiesen wird der Effekt, indem man Terahertz-Strahlung durch das Material schickt: Bei einheitlicher magnetischer Ordnung kann das Material die Schwingungsrichtung des Terahertz-Strahls drehen. Wenn man mit einem statisches elektrisches Feld die Richtung der magnetischen Spirale ein und ausschalten kann, legt man damit also auch fest, ob das Feld der Terahertz-Strahls gedreht wird oder nicht.

Zahlreiche Anwendungsmöglichkeiten zeichnen sich ab: Überall dort, wo man die Vorteile magnetischer und elektrischer Effekte kombinieren möchte, gelten solche Materialien mit Elektromagnonen-Effekt als Zukunftshoffnung. Einsätze für neuartige Verstärker, Transistoren oder Datenspeicher sind vorstellbar. Auch für Sensoren könnten solche Elektromagnonen verwendet werden.

Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/neuermaterialeffekt/

Originalpaper: http://prl.aps.org/abstract/PRL/v111/i22/e227201

Rückfragehinweis:
Prof. Andrei Pimenov
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-137 23
andrei.pimenov@tuwien.ac.at
Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at
Weitere Informationen:
http://prl.aps.org/abstract/PRL/v111/i22/e227201
Originalpaper
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/neuermaterialeffekt/
Weitere Bilder

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics