Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Laser für Computerchips

19.01.2015

Internationales Wissenschaftler-Team baut ersten Germanium-Zinn Halbleiterlaser für Siliziumchips

Wissenschaftler des Forschungszentrums Jülich und des Schweizer Paul Scherrer Instituts haben gemeinsam mit internationalen Partnern den ersten Halbleiterlaser vorgestellt, der ausschließlich aus Elementen der vierten Hauptgruppe besteht.


Schema: Germanium-Zinn-Laser, der mit einer Germanium-Zwischenschicht orange), direkt auf dem Silizium-Wafer (blau) aufgebracht wird.

Copyright: Forschungszentrum Jülich


Wissenschaftler des Peter Grünberg Instituts (PGI-9) im Reinraum (von links: Prof. Siegfried Mantl, Prof. Detlev Grützmacher, Stephan Wirths, Nils von den Driesch und Dr. Dan Buca).

Copyright: Forschungszentrum Jülich

Der Germanium-Zinn-(GeSn) Laser lässt sich daher direkt auf einem Silizium-Chip aufbringen und schafft damit eine neue Grundlage, um Daten auf Computerchips mit Licht zu übertragen: schneller und mit einem Bruchteil der Energie als es über klassische Kupferleitungen möglich wäre. Die Ergebnisse sind in der Fachzeitschrift Nature Photonics erschienen.

Der Datentransfer zwischen multiplen Kernen wie auch zwischen Logik- und Speicherelementen gilt als Flaschenhals der sich rasant weiterentwickelnden Computertechnologie. Die Kommunikation mit Licht käme wie gerufen, um den Datenfluss auf Computerchips sowie zwischen verschiedenen Komponenten auf dem Board zu beschleunigen und wesentlich energieeffizienter zu gestalten.

„Die Signalübertragung über Kupferverbindungen limitiert die Weiterentwicklung von größeren und schnelleren Rechnern aufgrund der Wärmebelastung sowie der begrenzten Bandbreite von Kupferverbindungen. Allein das Signal zur Synchronisation der Schaltkreise verbraucht bis zu 30 Prozent der Energie – Energie, die sich durch die optische Übertragung einsparen lässt“, erläutert Prof. Detlev Grützmacher, Direktor am Jülicher Peter Grünberg Institut.

Langstrecken-Telekommunikationsnetze und Rechenzentren setzen teilweise schon seit Jahrzehnten auf optische Verbindungen. Mit ihnen lassen sich auch über größere Entfernungen noch sehr hohe Bandbreiten erzielen. Über Glasfaserkabel pflanzen sich die Signale praktisch verlustfrei und simultan über verschiedene Wellenlängen fort: ein Geschwindigkeitsvorteil, von dem zunehmend auch die Mikro- und Nanoelektronik profitiert.

„In vielen Bereichen ist die Integration optischer Bauteile bereits ziemlich weit fortgeschritten. Was aber trotz intensiver Forschung bislang fehlt, ist eine Laserquelle, die mit der Chip-Herstellung kompatibel ist“, so der Leiter des Bereichs Halbleiternanoelektronik (PGI-9).

Passendes Material für die Chip-Produktion
Grundlage der Chip-Fertigung ist Silizium, das der vierten Hauptgruppe im Periodensystem angehört. Typische Halbleiterlaser für Telekommunikationssysteme, etwa aus Galliumarsenid, sind jedoch teuer und bestehen aus Elementen der dritten und fünften Hauptgruppe. Das wirkt sich grundlegend auf die Kristalleigenschaften aus. Entsprechende Laserbauelemente lassen sich daher nicht direkt auf Silizium aufbringen. Sie müssen aufwendig extern produziert und beispielsweise nachträglich mit dem Wafer verklebt werden. Dass sich die thermischen Ausdehnungskoeffizienten deutlich von Silizium unterscheiden, schränkt die Lebensdauer derartiger Elemente allerdings stark ein.

Halbleiter der vierten Hauptgruppe – dazu gehört neben Silizium auch Germanium – lassen sich dagegen ohne grundlegende Schwierigkeiten in den Herstellungsprozess integrieren. Doch beide Elemente sind als Lichtquelle nicht besonders effizient. Sie zählen zu den sogenannten indirekten Halbleitern. Im Gegensatz zu einem direkten Halbleiter geben sie im angeregten Zustand in erster Linie Wärme und nur wenig Licht ab. Forschergruppen auf der ganzen Welt verfolgen daher intensiv das Ziel, die Materialeigenschaften von Germanium so zu manipulieren, dass es sich zur Verstärkung optischer Signale und damit als Laserquelle nutzen lässt.

Verbindung mit hohem Zinngehalt
Den Wissenschaftlern vom Jülicher Peter Grünberg Institut ist es nun erstmals gelungen, einen „echten“ direkten Gruppe-IV-Halbleiterlaser durch die Verbindung von Germanium und Zinn, das ebenfalls der vierten Hauptgruppe angehört, herzustellen. „Entscheidend für die optischen Eigenschaften ist der hohe Zinngehalt. Wir konnten erstmals über zehn Prozent Zinn in das Kristallgitter einbauen, ohne dass es seine optische Güte verliert“, berichtet Doktorand Stephan Wirths. „Die Funktion des Lasers ist allerdings bisher auf tiefe Temperaturen von bis zu minus 183 Grad Celsius beschränkt, was in erster Linie daran liegt, dass wir mit einem nicht weiter optimierten Testsystem gearbeitet haben“, ergänzt Dr. Dan Buca.

Gemeinsam mit seinen Kollegen aus der Abteilung von Prof. Siegfried Mantl am PGI-9 hat Stephan Wirths den Laser direkt auf einem Silizium-Wafer aufgebracht, dessen Eigenschaften anschließend am Schweizer Paul Scherrer Institut vermessen wurden. Der Doktorand Richard Geiger hat die Laser-Strukturen dort hergestellt. „Damit konnten wir nachweisen, dass die Germanium-Zinn Verbindung optische Signale verstärken kann und darüber hinaus in der Lage ist, Laserlicht zu erzeugen“, berichtet Dr. Hans Sigg vom Labor für Mikro- und Nanotechnologie.

Für den Nachweis wurde der Laser optisch angeregt. Nun arbeiten die Jülicher Wissenschaftler in der Arbeitsgruppe von Dr. Dan Buca daran, Optik und Elektronik noch stärker zu verschränken. Der nächste große Schritt ist jetzt, das Laser-Licht mit Strom zu erzeugen, möglichst ohne Kühlung. Ziel ist es, einen elektrisch gepumpten Laser zu fabrizieren, der bei Raumtemperatur funktioniert.

Neue Wellenlänge für neue Anwendungen
Sehen kann man den Laserstrahl mit dem bloßen Auge übrigens nicht. GeSn absorbiert und emittiert Licht im Wellenlängenbereich von 3 Mikrometer. An dieser Grenze des nahen und mittleren Infrarotbereichs weisen auch viele Kohlenstoffverbindungen starke Absorptionslinien auf: Klimagase etwa oder Biomoleküle. Detektoren aus GeSn versprechen somit neue Möglichkeiten , diese Verbindungen nachzuweisen.

Von dem neuen Lasermaterial könnten daher neben Computerchips auch völlig neue Anwendungen profitieren, die aus Kostengründen bisher kaum verfolgt wurden: Gassensoren und implantierbare Chips für medizinische Anwendungen etwa, die mittels spektroskopischer Analyse Informationen über den Blutzuckerspiegel und andere Parameter ermitteln. Kostengünstige und tragbare Sensorik, zum Beispiel in ein Smartphone integriert, könnte in Zukunft Echtzeitdaten von Stoffverteilungen in der Luft und im Boden liefern und damit einen Beitrag zum besseren Verständnis der Wetter- und Klimaentwicklung liefern.

Originalpublikation:
Lasing in direct bandgap GeSn alloy grown on Si
S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J.M. Hartmann, H. Sigg, J.Faist, D. Buca and D. Grützmacher
Nature Photonics (published online 19 January 2015), DOI: 10.1038/nphoton.2014.321

Teile der Arbeit wurden durch den Schweizerischen Nationalfonds SNF gefördert. Die Untersuchung von Wachstumsprozessen mittels CVD (Chemische Gasphasenabscheidung, engl. chemical vapor deposition) erhielt Mittel aus dem 7. EU-Forschungsrahmenprogramm (Grant 115
Agreement Nr. 619509, Projekt E2SWITCH) und dem BMBF-Projekt UltraLowPow (16ES0060 K).

Weitere Informationen:
Forschung am Peter Grünberg Institut, Halbleiter-Nanoelektronik, Forschungszentrum Jülich (PGI-9): http://www.fz-juelich.de/pgi/pgi-9/DE/Home/home_node.html
Laboratory for Micro and Nanotechnology, Paul Scherrer Institut (PSI): http://www.psi.ch/lmn/lmn

Ansprechpartner:
Prof. Detlev Grützmacher, Direktor des Peter Grünberg Instituts, Halbleiter-Nanoelektronik, Forschungszentrum Jülich (PGI-9)
Tel. +49 2461 61-2340
d.gruetzmacher@fz-juelich.de

Stephan Wirths, Peter Grünberg Institut, Halbleiter-Nanoelektronik, Forschungszentrum Jülich (PGI-9)
Tel. +49 2461 61-3149
s.wirths@fz-juelich.de

Dr. Dan Buca, Peter Grünberg Institut, Halbleiter-Nanoelektronik, Forschungszentrum Jülich (PGI-9)
Tel. +49 2461 61-3149
d.m.buca@fz-juelich.de

Dr. Hans Sigg, Labor für Mikro- und Nanotechnologie; Paul Scherrer Institut, Villingen, Schweiz;
Tel. +41 56 310 40 48
hans.sigg@psi.ch

Pressekontakt:
Tobias Schlößer, Unternehmenskommunikation, Forschungszentrum Jülich
Tel. +49 2461 61-4771
t.schloesser@fz-juelich.de

Das Forschungszentrum Jülich …
… betreibt interdisziplinäre Spitzenforschung und stellt sich drängenden Fragen der Gegenwart. Mit seinen Kompetenzen in der Materialforschung und Simulation und seiner Expertise in der Physik, der Nano- und Informationstechnologie sowie den Biowissenschaften und der Hirnforschung entwickelt es die Grundlagen für zukünftige Schlüsseltechnologien. Damit leistet das Forschungszentrum Beiträge zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Energie und Umwelt sowie Information und Gehirn.
Das Forschungszentrum Jülich geht neue Wege in strategischen Partnerschaften mit Hochschulen, Forschungseinrichtungen und der Industrie im In- und Ausland. Mit mehr als 5.000 Mitarbeiterinnen und Mitarbeitern gehört es als Mitglied der Helmholtz-Gemeinschaft zu den großen interdisziplinären Forschungszentren Europas

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-01-19photo-...

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie