Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer exotischer Teilchenzustand gibt Rätsel auf

31.08.2015

Eine neue, exotische Kombination von leichten Quarks haben Wissenschaftler der COMPASS-Kollaboration am CERN beobachtet. Die Entdeckung gelang bei einer Untersuchung von Daten, bei denen Pionen mit nahezu Lichtgeschwindigkeit auf ein flüssiges Wasserstoff-Target geschossen wurden. Nun sind die theoretischen Physiker am Zug, eine Erklärung für den neuen Teilchenzustand zu finden: Zwar haben sie schon eine Reihe von Erklärungen vorgeschlagen, diese konnten jedoch bisher nicht alle Eigenschaften des Exoten korrekt beschreiben. Physiker des Exzellenzclusters Universe der TU München sind am COMPASS-Experiment maßgeblich beteiligt und leiteten bei der Entdeckung die Datenanalyse.

Quarks sind dem Standardmodell der Teilchenphysik zufolge die fundamentalen Bausteine, aus denen Atomkerne aufgebaut sind: Ein Proton besteht aus einem up- und zwei down-Quarks, ein Neutron aus einem down und zwei up-Quarks. Damit ist der Teilchenzoo der Quarks jedoch noch lange nicht komplett: Neben den beiden leichtesten Quarks gibt es noch vier weitere: das strange-, charm-, bottom- und das top-Quark sowie ihre jeweiligen Antiteilchen, die Antiquarks.


Der Aufbau des COMPASS Experiments am Super Proton Synchrotron am CERN.

CERN

Alle diese Quarks waren kurz nach dem Urknall vorhanden und spielten eine wichtige Rolle bei der Entstehung unseres Universums. Die vier schweren Quarks sind in den Naturvorgängen in unserer Umgebung nicht mehr zu beobachten. Um sie nachzuweisen, werden große Teilchenbeschleuniger benötigt. Zusammengehalten werden die Quarks durch „Klebeteilchen“, Gluonen, die auch die starke Wechselwirkung, die stärkste der vier Fundamentalkräfte der Physik, vermitteln.

Die starke Wechselwirkung wird durch eine Theorie beschrieben, die sich Quantenchromodynamik (QCD) nennt und in den 1980-er Jahren entwickelt wurde. Mit ihrer Hilfe wollen die Physiker beschreiben, nach welchen Prinzipien sich Materie formt und welche Konfigurationen von Teilchen die Natur zulässt. Die QCD sagt dabei eine ganze Reihe von Quark-Kombinationen voraus.

Einige davon sind gut bekannt: Eine Kombination von drei Quarks (Baryonen), wie sie etwa in den Protonen und Neutronen vorkommen, sowie eine Kombination aus einem Quark- und einem Antiquark (Mesonen), wie sie etwa die Pionen aufweisen. Auch einige exotische Kombinationen, wie zum Beispiel molekülähnliche Vierfach-Quarks oder sogar Fünffach-Quarks, sind der QCD zufolge möglich. Kürzlich wurden am LHC tatsächlich Hinweise auf ein solches Fünffach-Quark gefunden.

Die Kombinationsregeln von Quarks zu verstehen, ist seit langem eine große Herausforderung für die theoretische wie auch die experimentelle Teilchenphysik. Dabei erschwert ein äußerst ungewöhnliches Phänomen das Verständnis der Quark-Kombination: Die Kräfte zwischen den Quarks werden immer größer, je weiter man diese voneinander entfernt. Die starke Wechselwirkung wächst also, anders als die anderen drei Grundkräfte, mit zunehmendem Abstand der Teilchen. Die zugehörigen QCD-Gleichungen stellen eine der großen Herausforderungen in der theoretischen Physik dar. Eine Annäherung an die Lösung wird vor allem mit Computersimulationen erreicht, die sehr viel Rechenzeit beanspruchen, aber mögliche Teilchenkombinationen deutlich einschränken.

In ihrer neuesten Publikation macht die COMPASS-Kollaboration die Existenz eines ungewöhnlichen Mesons öffentlich, das sich aus leichten Quarks zusammensetzt und eine Masse von 1,42 GeV/c2 hat. Da in dieser Massenregion seit einem halben Jahrhundert geforscht wird, ist die Entdeckung des neuen Teilchens mit Hilfe des COMPASS-Spektrometers am Super Proton Synchrotron (SPS) am CERN eine große Überraschung. Diese ist dem weltweit größten Datensatz für solche Untersuchungen zu verdanken.

Das neue a1(1420) genannte Teilchen wurde bei Datenanalysen von Experimenten gefunden, bei denen Pionen mit einem Impuls von 190 GeV/c auf ein Flüssig-Wasserstoff-Target geschossen wurden. Weil dieser neue Zustand rund 1.000 Mal seltener vorkommt als die bekannten Mesonen, war zur Identifizierung eine neue, komplexe Analysemethode nötig, für die Wissenschaftler des Exzellenzclusters Universe der Technischen Universität München (TUM) zuständig waren.

Für das neue Teilchen wurden verschiedene theoretische Erklärungen vorgeschlagen. Diese interpretieren das a1(1420) als ein Molekül, aufgebaut aus bekannten Mesonen, oder als einen Vier-Quark-Zustand. Andere Erklärungen machen verschiedenartige langreichweitige Effekte der starken Wechselwirkung für die Beobachtung verantwortlich. Diese Erklärungen decken jedoch die experimentellen Befunde nicht vollständig ab. „Obwohl es experimentell gut belegt ist, ist das neue Teilchen a1(1420) offenbar ein neues Mitglied im Club der bisher unerklärten Zustände“, sagt Prof. Dr. Stephan Paul vom Exzellenzcluster Universe der TUM. Die Experten der Quantenchromodynamik haben also mit dem neuen Teilchenzustand eine weitere schwere Aufgabe zu lösen.

Das COMPASS-Experiment wird seit 2002 am Super Proton Synchrotron (SPS) betrieben, dem zweitgrößten Beschleunigerring am CERN. Zur Kollaboration gehören rund 220 Physiker aus 13 Ländern. An den Forschungsarbeiten zu dieser Veröffentlichung waren in Deutschland beteiligt die Unis in Bochum, Bonn, Erlangen-Nürnberg, Freiburg und Mainz sowie das Helmholtz Zentrum Bonn und die Technische Universität München (TUM). Die Forschungsarbeiten wurden in Deutschland unterstützt vom Bundesministerium für Bildung und Forschung (BMBF), dem Exzellenzcluster Universe und dem Rechenzentrum C2PAP des Exzellenzclusters Universe, dem Institute for Advanced Study der TUM sowie der Humboldt Stiftung.

Weitere Informationen:

http://www.universe-cluster.de
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.082001

Petra Riedel | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: CERN Synchrotron TUM Teilchen Teilchenphysik Universe Wechselwirkung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics