Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer einfacher Versuchsaufbau für Röntgen-Phasenkontrast

11.07.2014

Mit der Röntgenphasenkontrast-Methode lassen sich hochqualitative Bilder von Objekten mit nur geringer Strahlendosis aufnehmen.

Bis jetzt sind solche Aufnahmen aber nur schwer zu erzeugen, da, unter anderem, spezielle Strahlenquellen nötig sind, die nur in großen Teilchenbeschleuniger-Anlagen vorkommen. Wissenschaftler der Technischen Universität München (TUM), des Royal Institute of Technology in Stockholm (KTH) und des University College London (UCL) haben jetzt gezeigt, dass verlässliche Phasenkontrastaufnahmen schon mit einem sehr einfachen Versuchsaufbau und einer Laborstrahlenquelle von extrem hoher Strahlkraft produziert werden können.


Intensitäts-„Landkarte“ der gestreuten Röntgenstrahlen

Auf der Abbildung ist eine Intensitäts-„Landkarte“ der gestreuten Röntgenstrahlen zu sehen, die eine Vielzahl von zufällig verteilten hellen und dunklen Flecken, so genannte „speckles“, beinhaltet. Sie sind als Höheprofil dargestellt. Wird ein Objekt in den Strahl eingebracht, dann verändert es die Höhe und Tiefe der Täler und Hügel auf der „Landkarte“. Diese Änderungen werden analysiert, um ein Bild des Objekts darzustellen.

Figure: I. Zanette / TUM

Die Röntgenphasenkontrast-Technik nutzt für die Erstellung von Bildern die Brechung der Röntgenstrahlen beim Durchtritt durch das Objekt, und nicht, wie beim herkömmlichen Röntgen, die Abschwächung (Absorption). Bilder, die mit dieser Methode erzeugt werden, sind deshalb oft von sehr viel höherer Qualität als die Absorptionsbilder.

Die Wissenschaftlerinnen und Wissenschaftler um Prof. Franz Pfeiffer arbeiten daran, grundlegend neue Ansätze für die biomedizinische Bildgebung und Therapie mit Röntgenstrahlen zu entwickeln – einschließlich der Röntgenphasenkontrast-Technik. Ein Hauptziel ist es, diese Methode in Zukunft auch für die Diagnose von Krebs oder Osteoporose in der Klinik einsetzbar zu machen.

In ihrer neuen Studie haben die Wissenschaftler jetzt einen extrem einfachen Aufbau für Röntgenphasenkontrast-Bilder entwickelt. Um die Bildinformationen zu erhalten, wählten sie einen ungewöhnlichen Weg: sie streuten die Röntgenstrahlen auf eine spezielle Weise, so dass zufällige Strukturen entstanden.

Diese „speckles“, wie sie in Fachkreisen genannt werden, liefern eine Vielzahl von Informationen über das Objekt, das sie durchdringen. Die gestreuten Röntgenstrahlen werden mit einer hochauflösenden Röntgenstrahl-Kamera aufgefangen und die Informationen daraufhin durch Analysieren der Daten gewonnen.

Hohe Genauigkeit und neuartige Röntgenquelle

Die Forscher konnten zudem zeigen, wie effizient und vielfältig ihr Ansatz ist. „Aus einer einzigen Messung bekommen wir drei unterschiedliche Bilder des Objekts: ein Abschwächungsbild, ein Phasen-Bild und eine Dunkelfeld-Aufnahme“, erklärt Dr. Irene Zanette, leitende Wissenschaftlerin der Studie. „Das Phasen-Bild kann genutzt werden, um die projizierte Dicke des Objekts sehr genau zu messen. Mit Hilfe des Dunkelfeld-Bildes lassen sich darüber hinaus kleinste Strukturen wie Fasern oder Risse sichtbar machen, die sonst nicht aufgelöst werden könnten“, fügt sie hinzu.

Eine hohe Strahlkraft der Quelle ist ebenfalls ein wichtiger Faktor, um Phasenkontrastaufnahmen erzeugen zu können. „In unserem neuen Versuchsaufbau verwenden wir einen Strahl aus flüssigem Metall zur Röntgenerzeugung in der Quelle und nicht - wie bei üblichen Laborquellen - festes Material“, sagt Tunhe Zhou vom KTH Stockholm, Projektpartner der TUM.

„Das erlaubt uns, hohe Intensitäten zu erzeugen, die wir für Phasenkontrastaufnahmen brauchen, ohne dabei die Strahlenquelle zu zerstören.“ Um die unterschiedlichen Bilder gleichzeitig zu erstellen, scannt ein spezieller Algorithmus die "speckles" und analysiert genau, wie sich ihre Form und Position verändern, wenn sich eine Probe im Strahl befindet.

Aber nicht alle Komponenten des neuen experimentellen Aufbaus sind High-Tech. Um die Röntgenstrahlen speziell zu streuen, fanden die Wissenschaftler eine billige und einfache Lösung: „Wir haben festgestellt, dass ein einfaches Sandpapier hierfür perfekt geeignet ist“, erklärt Irene Zanette.

Die Wissenschaftler arbeiten bereits an den nächsten Schritten. „Die neue Technik braucht nur eine Aufnahme und wäre daher auch geeignet, sie in Richtung Phasenkontrast-Tomographie zu erweitern. Das würde uns 3D-Einblicke in die Mikrostruktur des untersuchten Objekts ermöglichen“, beschreibt Zanette die Pläne der Wissenschaftler.

Originalpublikation
I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz. Speckle-based X-ray Phase-contrast and Dark-Field Imaging with a Laboratory Source. Phys. Rev. Lett., 2014.
DOI: 10.1103/PhysRevLett.112.253903
(http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.253903)

Kontakt
Lehrstuhl für Biomedizinische Physik & IMETUM
Technische Universität München
http://www.e17.ph.tum.de/

Prof. Dr. Franz Pfeiffer
Inhaber des Lehrstuhls für Biomedizinische Physik
Tel.: +49 89 289 - 10807
franz.pfeiffer@tum.de

Dr. Irene Zanette
Postdoktorandin
Tel.: +49 89 289 -10802
irene.zanette@tum.de

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31654/ - Diese Meldung im Web
https://mediatum.ub.tum.de/?cfold=1224678&dir=1224678&id=1224678#1224678 - Bildmaterial zur Meldung
http://www.tum.de/die-tum/aktuelles - Pressemitteilungen der Technischen Universität München

Dr. Ulrich Marsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien
17.01.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie