Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neuer Blick in das Heiße und Energetische Universum

29.11.2013
ESA wählt Wissenschaftsthema für nächste Großmission

Bei seiner heutigen Sitzung in Paris entschied sich das wissenschaftliche Programmkommittee SPC der Europäischen Weltraumorganisation (ESA) für das „Heiße und Energetische Universum“ als Thema ihrer nächsten Großmission, die voraussichtlich 2028 gestartet wird.


Das zukünftige Athena Röntgenobservatorium könnte die entscheidenden Antworten liefern auf die Fragen: Wie bildeten sich die großräumigen Strukturen aus gewöhnlicher Materie, die wir heute sehen? Wie wachsen Schwarze Löcher und wir beeinflussen sie das Universum?

© Athena collaboration

Das Thema wurde von einer internationalen Kollaboration vorgeschlagen, die von Prof. Kirpal Nandra, Direktor am Max-Planck-Institut für extraterrestrische Physik (MPE) geleitet wird. Nach der überzeugenden Argumentation für dieses spannende Thema wird das gleiche Team nun ein innovatives Missionskonzept vorlegen, um damit einige der dringendsten Fragen der modernen Astrophysik zu beantworten.

Mit dem „Advanced Telescope for High-Energy Astrophysics” (Athena) hätten die Astrophysiker die nötige räumliche und spektrale Auflösung sowie genügend Nachweisempfindlichkeit und Himmelsabdeckung zur Verfügung, um viel besser verstehen zu können, warum das beobachtete Universum genauso aussieht wie wir es beobachten.

Wie bildeten sich die großräumigen Strukturen aus gewöhnlicher Materie, die wir heute sehen? Wie sind Schwarze Löcher gewachsen und wie prägten sie das Universum? Diese Fragen gehören zu den wichtigsten offenen Problemstellungen der modernen Astrophysik, und die nächste große ESA-Mission könnte die nötigen Antworten liefern.

"Wir freuen uns sehr, dass die ESA das „Heiße und Energetische Universum“ als eines seiner Hauptziele ausgewählt hat", sagt Nandra, der Sprecher des Wissenschaftsthemas und Leiter der Athena Kollaboration, die diesen Vorschlag in einem White Paper vorbereitet hatte. "Wir haben ein hervorragendes Team an Astrophysikern, deren Argumente für dieses spannende Thema eindeutig überzeugt haben. Unsere Arbeit ist damit aber noch längst nicht getan: jetzt müssen wir daran arbeiten, ein Röntgenteleskop zu definieren, das uns die gewünschten Antworten liefern kann."

Gewöhnliche Materie liegt im Universum größtenteils als heißes Gas vor. Dieses ist zum Beispiel für die Galaxienhaufen verantwortlich, die größten zusammenhängenden Strukturen, die wir heute kennen. Bei Temperaturen von mehr als zehn Million Grad emittiert das Gas besonders hell im Röntgenbereich. Deshalb ist ein Röntgenobservatorium im Weltraum mit hoher Empfindlichkeit, guter spektraler Auflösung und einem großen Sichtfeld der Schlüssel dazu, die Entstehung und Entwicklung dieser Strukturen zu verstehen. Athena wurde zu genau diesem Zweck konzipiert. Mit einem derartigen Teleskop könnten Astronomen spektroskopische Beobachtungen von weit entfernten Galaxien erhalten und die physikalischen Parameter der größten gebundenen Objekte vermessen.

Diese Informationen würden unser Verständnis davon, wie sich die Strukturen aus heißem Gas in der Kinderstube des Universums bildeten, einen großen Schritt voran bringen. Messungen der Geschwindigkeiten, der Thermodynamik und der chemischen Zusammensetzung des heißen Gases sowie die Veränderung dieser Parameter auf kosmischen Zeitskalen würde den Wissenschaftlern auch ganz neue Einblicke in komplexe astrophysikalische Prozesse erlauben, wie Turbulenzen oder nicht-gravitative Heizung. Derartige Vorgänge sind von entscheidender Bedeutung, wenn die Wissenschaftler verstehen wollen, wie sich Strukturen aus gewöhnlicher Materie bilden und entwickeln.

Mit einem Röntgenteleskop wie Athena könnten die Astronomen sogar noch weiter in die Geschichte des Universums zurück blicken, um dort die energiereichsten Vorgänge zu untersuchen und die ersten supermassereichen Schwarzen Löcher zu entdecken. Diese stammen aus einer Zeit, als sich die ersten Galaxien bildeten, weniger als eine Milliarde Jahre nach dem Urknall. Aufgrund der extrem hohen Temperaturen und der riesigen Energiemengen, die Materie abgibt, wenn sie in ein Schwarzes Loch fällt, ist Röntgenstrahlung die verlässlichste und vollständigste Methode, um diese akkretierenden Monster zu untersuchen.

Bemerkenswerterweise scheinen Prozesse aus der unmittelbaren Nähe des Schwarzen Lochs in der Lage zu sein, ganze Galaxien und Galaxienhaufen auf Milliarden-mal größeren Längenskalen zu beeinflussen. Diese "kosmische Rückkoppelung" ist daher ein wesentlicher - aber bisher unzureichend verstandener - Bestandteil von Modellen zur Galaxienentwicklung.

Das Wachstum von supermassereichen Schwarzen Löchern über kosmische Zeitskalen hinweg nachzuverfolgen, insbesondere in der frühesten Epoche der Galaxienbildung (bei z=6-10), ist mit heutigen Instrumenten und Teleskopen unmöglich. "Aber inzwischen haben wir die Technologien für die Röntgenoptik genügend weiterentwickelt, um nicht nur einen kleinen Schritt sondern einen großen Sprung in Bezug auf Lichtsammelfläche und Winkelauflösung für großflächigen Röntgenbilder zu machen", sagt Nandra.

"Am MPE haben wir in den letzten Jahren unsere Röntgendetektoren kontinuierlich für genau diese Einsatzmöglichkeit entwickelt. Jetzt haben wir die Chance, damit das Universum mit ausgezeichneter Empfindlichkeit und über einen beispiellos großen Himmelsbereich hinweg abzutasten. Die frühesten supermassereichen Schwarzen Löcher sind jetzt in unserer Reichweite."

Nachdem das Wissenschaftsthema von der ESA jetzt festgelegt wurde, folgt als nächster Schritt die Suche nach einem Röntgenobservatorium, das diese wissenschaftlichen Ziele erreichen kann. Da das Team von Athena dieses Themas vorgeschlagen hatte und auch die erforderlichen Technologien bereits vorweisen kann, sind die Wissenschaftler zuversichtlich, dass ihre Mission das Rennen machen wird. Sobald ein Missionskonzept ausgewählt wird, sollte die Technologieentwicklung in einem Zeitraum von 3-4 Jahren konsolidiert werden. Anschließend dürfte es weitere 10 Jahre dauern, um das Observatorium fertig zu stellen. Ab 2028 könnte Athena dann das heiße und energetische Universum mit bisher unerreichter Genauigkeit durchleuchten und eine Antwort auf die grundlegende Frage finden, warum unser Universum so aussieht, wie wir es heute beobachten.

Nach der Auswahl des "Heißen und Energetischen Universum" für die nächste Großmission, beschloss die ESA das „gravitative Universum" als Thema bei der darauffolgenden Großmission zu verfolgen. Als bester Kandidat gilt dafür das Gravitationswellenobservatorium eLISA („evolved Laser Interferometer Space Antenna.

Weitere Informationen
Zu den Autoren, die überzeugende Argumente für das „Heiße und Energetische Universum“ lieferten, zählen 140 Wissenschaftler aus über 20 Ländern weltweit. Zu den wichtigsten beteiligten Instituten in Deutschland gehören das MPE, die Rheinische Friedrich-Wilhelms-Universität Bonn, die Friedrich-Alexander-Universität Erlangen-Nürnberg und die Eberhard Karls Universität Tübingen.
Kontakt
Kirpal Nandra
Max Planck Institute für extraterrestrische Physik
85741 Garching
E-mail: knandra@mpe.mpg.de
Tel: +49 89 30000-3401
Mobil: +49 0151 – 42627193
Arne Rau
Max Planck Institute for Extraterrestrial Physics
85741 Garching
E-mail: arau@mpe.mpg.de
Tel: +49 89 30000- 3851
Thomas Reiprich
Argelander-Institut für Astronomie
Universität Bonn
Auf dem Hügel 71
53121 Bonn
Tel: +49-228-733642
Mobile: +49-151-41943953
Email: reiprich@astro.uni-bonn.de
Joern Wilms
FAU Erlangen-Nuremberg
Remeis-Sternwarte & ECAP
Sternwartstr. 7
96049 Bamberg
email: joern.wilms@sternwarte.uni-erlangen.de
mobile: +49 174 2068644

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpa-garching.mpg.de
http://www.mpe.mpg.de/4667554/News_20131128

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie