Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Umwandlung von Neutrinos nachgewiesen

19.07.2013
Was bereits beobachtet wurde, konnte nun signifikant nachgewiesen werden: Es gibt eine weitere Umwandlung von Neutrinos – denjenigen Elementarteilchen, die wichtig sind für das Verständnis unseres Universums. Am Gross-Experiment in Japan sind auch Berner Teilchenphysiker beteiligt.

Das Bild um die rätselhaften Neutrinos wird klarer: Wie heute beim Treffen der «European Physical Society» in Stockholm bekannt gegeben wurde, konnte beim «T2K-Experiment» in Japan nun die Umwandlung von sogenannten Myon-Neutrinos in Elektron-Neutrinos definitiv nachgewiesen werden.


ND280-Detektor des «T2K»-Experiments zur Vermessung des Neutrino-Strahls nahe der Strahlenquelle. Zu sehen ist das Eisenjoch des Magneten (rot), der den eigentlichen Detektor umschliesst (nicht sichtbar). Der Detektor befindet sich rund 17 Meter unter der Erdoberfläche, ist 7 Meter hoch und wiegt zirka 1'000 Tonnen.
Bild: M. Nirkko, Universität Bern

Bereits 2011 berichtete die internationale T2K-Kollaboration, an der auch das «Albert Einstein Center for Fundamental Physics» (AEC) der Universität Bern beteiligt ist, dass sie Hinweise auf die Umwandlung dieser Elementarteilchen gefunden hat. Diese Hinweise wurden nun mit einer entscheidenden Signifikanz von 1 zu 16 Trillionen bestätigt, was 7.5 Sigma entspricht. Diese spezifische Einheit im Vergleich: Die Entdeckung des Higgs-Teilchens wurde mit einer niedrigeren Signifikanz von 5 Sigma nachgewiesen.

Myon-Neutrinos losgeschickt und Elektron-Neutrinos empfangen

Beim T2K-Experiment in Japan wird ein Strahl von Myon-Neutrinos am «Japan Proton Accelerator Research Complex» (J-PARC) in Tokai nördlich von Tokyo produziert, und, knapp 300 Kilometer entfernt, durch den «Super-Kamiokande-Detektor» vermessen. In diesem wird nachgewiesen, dass sich mehr Elektron-Neutrinos im Myon-Neutrinostrahl befinden als am Start – somit fand unterwegs eine Umwandlung von Myon- zu Elektron-Neutrinos statt.

Im Experiment wurde nun zum ersten Mal dieser neue Typ von Neutrino-Oszillationen mittels Myon-Neutrinostrahl beobachtet. Neutrino-Oszillationen zwischen anderen Neutrino-Sorten – Myon-Neutrinos zu Tau-Neutrinos – wurden schon vor einigen Jahren erfolgreich beobachtet, ebenfalls mit Berner Beteiligung am internationalen OPERA-Experiment.

Berner Gruppe macht Teilchen-Kontrolle am Anfang

Um eine solche Messung durchführen zu können, ist eine exakte Kenntnis der Eigenschaften des Neutrinostrahls – die Energie der Neutrinos, die Anzahl der vor dem Umwandlungsprozess bereits vorhandenen Elektron-Neutrinos und weitere Faktoren – notwendig. Hierzu befindet sich in unmittelbarer Nähe zur Strahlquelle ein Komplex aus mehreren Detektoren. Die Forschenden hatten vor Beginn der Messungen einen Magneten installiert, der die Teilchen identifiziert und den kompletten Detektor umschliesst.

Unter der Leitung von Prof. Antonio Ereditato vom AEC arbeitet die Berner Gruppe am grössten dieser Detektoren mit, sie ist ebenfalls an der Analyse der entsprechenden Daten beteiligt. Neben der Vermessung des Neutrinostrahls werden verschiedene Reaktionen von Neutrinos mit Materie im Detail untersucht. Diese sind nicht nur für die Analyse des T2K-Experiments, sondern auch für andere Experimente in der Neutrinophysik von Bedeutung.

«Die Beobachtung dieser sogenannten Neutrino-Oszillationen ist wichtig für unser Verständnis von der Entstehung des Universums», sagt Antonio Ereditato. Eines der grössten, noch ungeklärten Rätsel der Wissenschaft sei bis heute, warum beim Urknall mehr Materie als Antimaterie erzeugt wurde. Eine solche Asymmetrie wurde bereits im Bereich der Quarks nachgewiesen, jedoch reicht der Effekt nicht aus, um das Rätsel zu lösen.

Neutrino-Oszillationen könnten bald wichtige Hinweise über eine ähnliche Asymmetrie liefern und damit das Verständnis über die Entstehung des Universums verbessern. Der nun beobachtete neue Typ von Neutrino-Oszillationen vervollständigt die notwendigen Grundlagen zur Messung der Asymmetrie zwischen Materie und Antimaterie durch Neutrinos. Die Resultate haben auch Auswirkungen auf die allgemeine Physik: «Die Messungen der Umwandlung von Neutrinos in eine andere Neutrino-Art zeigen, dass das Standardmodell der Physik erweitert werden muss», so Ereditato.

Das T2K-Experiment in Japan

Das Neutrino-Experiment produziert an der Ostküste Japans in Tokai einen hochenergetischen Myon-Strahl und schiesst diesen rund 300 Kilometer durch die japanischen Berge, wo der «Super-Kamiokande-Detektor» die Spuren der eintreffenden Teilchen misst. «T2K» steht für «Tokai to Kamiokande». Bereits 280 Meter nach dem Start wird der Strahl von einem ersten Detektor gemessen, dem «near detector 280 (ND280). An der Installation und der Auswertung der Daten von ND280 sind die Berner Forschenden massgeblich beteiligt. Weitere grosse Neutrino-Experimente, an denen die Berner Teilchenpyhsiker mitarbeiten, sind OPERA, EXO-200 und MicroBooNE.

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie