Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue physikalische Einsichten durch Aspirintabletten

07.09.2017

Aspirin in Form kleiner Kristalle liefert neue Einsichten in gekoppelte Bewegungen von Elektronen und Atomkernen. Wenn starke ultrakurze Impulse im fernen Infrarot (Terahertzbereich) Molekülschwingungen anregen, oszillieren die Atomkerne viel schneller als nach einer schwachen Anregung. Zusammen mit dem Zerfall der elektronischen Polarisation kehren die Molekülbewegungen allmählich zu ihrer ursprünglichen Schwingungsfrequenz zurück. Eine tiefgreifende theoretische Analyse der von den bewegten Ladungen abgestrahlten Terahertzwellen zeigt eine extrem starke Kopplung zwischen den Bewegungen der Elektronen und der Atomkerne, die für eine große Klasse von Molekülkristallen charakteristisch ist.

Aufgrund seiner physiologischen Wirkung hat Aspirin eine weite Anwendungspalette in verschiedenen Bereichen der Medizin gefunden. Wenn man sich aus physikalischer Sicht ein einzelnes Aspirinmolekül anschaut, kann man zwei unterschiedliche Bewegungstypen unterscheiden: (i) Molekülschwingungen sind oszillierende Bewegungen der Atomkerne in einem weiten Frequenzbereich, z.B. die behinderte Drehung der Methylgruppe mit einer Frequenz von 6 Terahertz (THz) (1 THz = 1.000.000.000.000 Oszillationsperioden pro Sekunde) und (ii) oszillierende Bewegungen der Elektronen innerhalb des Moleküls mit etwa 1000 THz , die man etwa mit ultraviolettem Licht anregen kann.


Blauverschiebung der soft mode hervorgerufen durch das elektrische Feld des THz-Impulses in einem Aspirinkristall

MBI Berlin

Während die beiden unterschiedlichen Bewegungen in einem isolierten Aspirinmolekül nur schwach miteinander koppeln, entwickelt sich eine sehr starke gegenseitige elektrische Wechselwirkung in der dichten Packung von Molekülen in Kristalliten, aus denen die Aspirintabletten aus der Apotheke bestehen.

Als Ergebnis dieser starken Kopplung wird die Schwingungsfrequenz sogenannter Weicher Moden (engl. soft mode) drastisch reduziert. Das komplizierte Kopplungsschema und die daraus resultierende Moleküldynamik sind wichtig um zu verstehen, wie Aspirin auf externe Stimuli antwortet. Bislang weiß man darüber fast nichts.

In der neuesten Ausgabe der amerikanischen Fachzeitschrift Physical Review Letters kombinierten Forscher aus dem Max-Born-Institut in Berlin und der Universität Luxemburg modernste Methoden der experimentellen und theoretischen Physik um grundlegende Eigenschaften solcher soft modes aufzuklären. In den Experimenten schickten die Wissenschaftler zwei phasengekoppelte Terahertzimpulse auf eine 700-μm dicke Tablette aus polykristallinem Aspirin.

Das von den sich bewegenden Atomen abgestrahlte elektrische Feld erlaubt es, die soft mode-Schwingungen direkt in Echtzeit zu beobachten. Die sogenannte zweidimensionale Terahertzspektroskopie zeigte eine überraschend starke nichtlineare Antwort der soft mode in Aspirinkristallen.

Dabei beobachtet man eine drastische Verschiebung der soft mode zu höheren Frequenzen (Abbildung). Die experimentell beobachtete Antwort zeigte einen nicht-instantanen Charakter auf der Pikosekunden-Zeitskala aufgrund der erzeugten elektrischen Polarisation der Aspirinkristalle. Während des Zerfalls dieser Polarisation kehrt die Frequenz der soft mode allmählich wieder zu ihrem Wert vor der Anregung zurück.

Die theoretische Analyse der Forscher zeigt, dass die großen elektrischen Polarisationen im Ensemble der Aspirinmoleküle der soft mode einen Hybrid-Charakter verleihen. Durch elektrische Dipol-Dipol-Wechselwirkungen werden Elektron- und Atomkern-Bewegungen stark korreliert. Vor der Anregung bestimmt diese Korrelation die Frequenz der soft mode in einem Aspirinkristall.

Eine intensive THz-Anregung bricht diese Korrelationen auf, was zu einer Blauverschiebung der Schwingungsfrequenz führt. Der vergleichsweise langsame Zerfall (Dekohärenz) der Polarisation ruft eine nicht-instantane Antwort der Aspirinkristalle hervor. Das hier beobachtete Szenario ist für eine große Klasse von molekularen Materialien wichtig, insbesondere für solche in Anwendungen in der Ferroelektrizität.

Filme stehen auf der MBI-Website zur Verfügung: https://www.mbi-berlin.de/de/current/index.html#2017_09_01

Abbildung: Blauverschiebung der soft mode hervorgerufen durch das elektrische Feld des THz-Impulses in einem Aspirinkristall. Abhängig von der elektrischen Feldstärke wird die soft mode von ihrer ursprünglichen Frequenzposition (rote Gauß-Kurve, Transmissionserhöhung) instantan zu einer blauverschobenen Position (Ensemble von orangen Gauß-Kurven, Transmissionsverringerung) verschoben.

Publikation:
Physical Review Letters 119, 097404 (2017)
Strong Local-Field Enhancement of the Nonlinear Soft-Mode Response in a Molecular Crystal
Giulia Folpini, Klaus Reimann, Michael Woerner, Thomas Elsaesser, Johannes Hoja, and Alexandre Tkatchenko
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.097404

Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Dr. Michael Wörner – Tel. 030 / 6392 1470
Giulia Folpini – Tel. 030 / 6392 1474
Prof. Dr. Klaus Reimann – Tel. 030 / 6392 1476
Prof. Dr. Thomas Elsässer – Tel. 030 / 6392 1400

Weitere Informationen:

https://www.mbi-berlin.de/de/current/index.html#2017_09_01
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.097404

Dipl.-Geogr. Anja Wirsing | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics