Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Himmelskarte zeigt die Magnetfelder der Milchstraße mit höchster Präzision

06.12.2011
Wissenschaftlern ist es erstmalig gelungen, die Magnetfeldstruktur der Milchstraße im Detail zu vermessen. Um diese Himmelskarte zu errechnen, wurden Daten von über 41.000 Einzelmessungen mit einem neuartigen Verfahren zur Bildrekonstruktion kombiniert.

Dabei arbeiteten Theoretiker des Max-Planck-Instituts für Astrophysik (MPA), die sich auf das neue Gebiet der Informationsfeldtheorie spezialisiert haben, und ein großes internationales Team von Radioastronomen zusammen. Die neue Karte zeigt nun nicht nur den gesamten Aufbau des galaktischen Magnetfeldes auf großen Skalen sondern auch kleinskalige Strukturen, die Aufschluss über turbulente Strömungen im galaktischen Gas geben.

Alle Galaxien sind von Magnetfeldern durchzogen, so auch unsere Milchstraße. Dabei folgen die Magnetfeldlinien zum Teil den Bewegungen des galaktischen Gases, können aber auch die Ursache für derartige Bewegungen sein. Trotz intensiver Forschung ist der Ursprung der Magnetfelder noch immer unbekannt. Man nimmt aber an, dass sie durch Dynamoprozesse aufgebaut werden, bei denen mechanische Energie in magnetische Energie umgewandelt wird. Ähnliche Prozesse laufen im Innern der Erde, der Sonne und im weitesten Sinn auch in Fahrraddynamos ab. Die neue Karte galaktischer Magnetfelder liefert nun neue Einblicke in die Maschinerie des galaktischen Dynamos.

Eine Möglichkeit die kosmischen Magnetfelder zu messen bietet der seit über 150 Jahren bekannte Faraday-Effekt. Dabei wird die Polarisationsebene von polarisiertem Licht, das durch ein magnetisiertes Medium fällt, gedreht. Das Ausmaß dieser Drehung hängt unter anderem von der Magnetfeldstärke und -richtung ab und erlaubt es somit, diese Eigenschaften zu untersuchen.

Um das Magnetfeld unserer eigenen Galaxie zu messen, benutzen Radioastronomen das polarisierte Licht entfernter Radiogalaxien, welches auf seinem Weg zu uns die Milchstraße durchqueren muss. Die dabei auftretende Drehung der Polarisation durch den Faraday-Effekt kann durch Messungen bei verschiedenen Frequenzen rekonstruiert werden. Damit können die Astronomen für die Sichtlinien zu den so vermessenen Radiogalaxien die Stärke des Faraday-Effektes bestimmen und erhalten somit Information über das galaktische Magnetfeld.

Um aus den Faraday-Messungen ein Bild der Magnetfelder der Milchstraße zu erhalten, müssen an möglichst dicht verteilten Himmelspunkten solche Radiogalaxien hinter der Milchstraße beobachtet werden. Doch wurden insbesondere am Südhimmel bisher nur wenige Messungen vorgenommen. Der von den 26 Radioastronomen des Projektes beigesteuerte Datensatz umfasst 41.330 Einzelmessungen und somit im Durchschnitt etwa eine Radiogalaxie pro Quadratgrad des Himmels.

Um eine möglichst realistische Karte des gesamten Himmels zu erhalten, muss also zwischen den vorhandenen Messpunkten interpoliert werden, wobei zwei Schwierigkeiten auftreten: Die jeweiligen Messgenauigkeiten variieren stark, deshalb sollten genauere Messungen ein größeres Gewicht bekommen. Außerdem ist nicht bekannt, wie groß die Himmelsregion ist, über die ein Messpunkt noch zuverlässig Informationen über seine Umgebung liefert. Diese Entfernung muss also direkt aus den Daten selbst erschlossen und korrekt berücksichtigt werden.

Dem nicht genug, gibt es noch ein weiteres Problem: Aufgrund des höchst komplexen Messvorgangs sind die Messunsicherheiten selbst unsicher. So kommt es vor, dass der tatsächliche Messfehler für einen kleinen aber signifikanten Teil der Daten mehr als zehnmal so groß ist, wie von den Radioastronomen angegeben. Die vermeintliche Genauigkeit dieser Ausreißer kann die Faraday-Karte galaktischer Magnetfelder stark verfälschen, sofern keine entsprechende Fehlerkorrektur vorgenommen wird.

Für derlei problematische Daten haben Wissenschaftler am MPA einen neuartigen Algorithmus zur Bildrekonstruktion entwickelt, den “erweiterten kritischen Filter”. Das Team nutzt dabei Methoden der neuen Informationsfeldtheorie, die logische und statistische Methoden auf Felder mit ungenauen Fehlerangaben anwendet. Dieser Ansatz ist so allgemein, dass er für eine Vielzahl von Bild- und Signal-verarbeitenden Anwendungen in Astronomie, Medizin und Geographie von Nutzen sein kann.

Neben der detaillierten Faradaykarte (Abb. 1) liefert der Algorithmus auch eine Karte der verbleibenden Unsicherheiten (Abb. 2), die insbesondere in der galaktischen Scheibe und in der weniger gut beobachteten Region um den Himmelssüdpol (rechter unterer Quadrant) deutlich größer sind. Um die Strukturen im galaktischen Magnetfeld hervorzuheben, ist in Abb. 3 der Effekt der galaktischen Scheibe heraus gerechnet worden, sodass schwächere Strukturen ober- und unterhalb der galaktischen Scheibe besser sichtbar sind.

Dadurch zeigt sich neben dem auffälligen horizontalen Band der Gasscheibe unserer Milchstraße in der Bildmitte, dass die Magnetfeldrichtungen ober- und unterhalb der Scheibe entgegengesetzt zu sein scheinen. Ein analoger Richtungswechsel findet auch an der vertikalen Mittellinie statt, die durch das Zentrum der Milchstraße verläuft.

Ein spezielles Szenario des galaktischen Dynamos sagt genau diese symmetrischen Strukturen voraus; dieses wird somit durch die neu erstellte Karte unterstützt. Die Magnetfeldlinien laufen in diesem Szenario parallel zur Ebene der galaktischen Scheibe kreis- oder spiralförmig um das galaktische Zentrum, wobei sie oberhalb und unterhalb der Scheibe entgegengesetzte Richtungen haben (Abb. 3). Von unserer Randposition in der galaktischen Scheibe aus gesehen entstehen daher die beobachteten Symmetrien der Faradaykarte.

Neben diesen großskaligen Strukturen sind aber auch diverse kleinere Strukturen zu sehen, die mit turbulenten Verwirbelungen und Verklumpungen im äußerst dynamischen Gas der Milchstraße zusammenhängen. Die neue Methode liefert als Nebenprodukt eine Charakterisierung der Größenverteilung dieser turbulenten Strukturen, das sogenannte Leistungsspektrum, wobei größere Strukturen stärker ausgeprägt sind als kleinere, wie es für Turbulenz typisch ist. Dieses Spektrum kann direkt mit Vorhersagen aufwändiger Computersimulationen der turbulenten Gas- und Magnetfelddynamik unserer Galaxie verglichen werden und erlaubt somit, galaktische Dynamomodelle im Detail zu testen.

Die neue Magnetfeldkarte ist aber nicht nur zum Studium unserer Galaxie interessant, auch zukünftige Studien extragalaktischer Magnetfelder werden auf diese Karte zurückgreifen, um den galaktischen Anteil der Messungen abziehen zu können. Von der nächsten Generation an Radioteleskopen wie LOFAR, eVLA, ASKAP, MeerKAT und dem SKA wird in den kommenden Jahren und Jahrzehnten eine Fülle von neuen Messungen des Faraday-Effekts erwartet. Diese wird in Aktualisierungen der Karte einfließen, um das Bild des Faraday-Himmels weiter zu verfeinern. Vielleicht wird diese Karte dann einmal den Weg zum verborgenen Ursprung der galaktischen Magnetfelder weisen.

Originalveröffentlichung:

Niels Oppermann, Henrik Junklewitz, Georg Robbers, Mike R. Bell, Torsten A. Enßin, Annalisa Bonafede, Robert Braun, Jo-Anne C. Brown, Tracy E. Clarke, Ilana J. Feain, Bryan M. Gaensler, Alison Hammond, Lisa Harvey-Smith, George Heald, Melanie Johnston-Hollitt, Uli Klein, Phil P. Kronberg, S. Ann Mao, Naomi M. McClure-Griffiths, Shane P. O'Sullivan, Luke Pratley, Tim Robishaw, Subhashis Roy, Dominic H.F.M. Schnitzeler, Carlos Sotomayor-Beltran, Jamie Stevens, Jeroen M. Stil, Caleb Sunstrum, Anant Tanna, A. Russell Taylor, and Cameron L. Van Eck, "An improved map of the galactic Faraday sky", 2011, submitted

http://arxiv.org/abs/1111.6186

Niels Oppermann, Georg Robbers, Torsten A. Enßlin, "Reconstructing signals from noisy data with unknown signal and noise covariances", 2011, Physical Review E 84, 041118

http://arxiv.org/abs/1107.2384

Torsten A. Enßlin, Mona Frommert, Francisco S. Kitaura, "Information field theory for cosmological perturbation reconstruction and non-linear signal analysis", 2009, Phys. Rev. D 80, 105005

http://arxiv.org/abs/0806.3474

Kontakt:

Niels Oppermann
Tel. 089 30000-2269
E-mail: noppermann@mpa-garching.mpg.de
Torsten Enßlin
Tel. 089 30000-2243
E-mail: tensslin@mpa-garching.mpg.de
Hannelore Hämmerle
Tel. 089 30000-3980
E-mail: pr@mpa-garching.mpg.de

Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news1112_fara/news1112_fara-de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie