Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Detektoren ermöglichen Suche nach leichten Teilchen der Dunklen Materie

08.09.2015

Die Erde, Planeten, Sterne und Galaxien bilden nur den sichtbaren Teil der Materie im Universum. Den weitaus größeren Teil nimmt die unsichtbare Dunkle Materie ein. In zahlreichen Experimenten fahnden Wissenschaftler nach den Teilchen der dunklen Materie – bisher vergeblich. Mit dem CRESST-Experiment lässt sich der Suchradius jetzt deutlich ausweiten: Die CRESST-Detektoren werden überarbeitet und können danach Teilchen nachweisen, deren Masse unterhalb des heutigen Messbereichs liegt. Somit steigt die Chance, der Dunklen Materie auf die Spur zu kommen.

In zahlreichen Experimenten fahnden Wissenschaftler nach den Teilchen der dunklen Materie – bisher vergeblich. Mit dem CRESST-Experiment lässt sich der Suchradius jetzt deutlich ausweiten: Die CRESST-Detektoren werden überarbeitet und können danach Teilchen nachweisen, deren Masse unterhalb des heutigen Messbereichs liegt. Somit steigt die Chance, der Dunklen Materie auf die Spur zu kommen.


Einbau von Detektormodulen in das CRESST-Experiment

Bild: Max-Planck-Institut für Physik

Theoretische Modelle und Beobachtungen im All lassen kaum einen Zweifel daran, dass dunkle Materie existiert. Ihr Anteil beträgt das Fünffache der sichtbaren Materie.

„Als wahrscheinlichster Kandidat für das dunkle Materieteilchen galt bisher ein schweres Teilchen, das WIMP“, erklärt Dr. Federica Petricca, Wissenschaftlerin am Max-Planck-Institut für Physik und Sprecherin des CRESST-Experiments (Cryogenic Rare Event Search with Superconducting Thermometers). „Daher untersuchen die meisten Experimente derzeit einen Messbereich zwischen 10 und 1.000 GeV/c2.“

Die derzeitige Untergrenze von 10 GeV/c2 (GeV: Gigaelektronenvolt; c: Lichtgeschwindigkeit) entspricht ungefähr der Masse eines Kohlenstoffatoms. Allerdings gibt es in der Dunkle Materie-Forschung inzwischen neue theoretische Modelle, die einige Ungereimtheiten beseitigen – zum Beispiel den Unterschied zwischen der simulierten und der tatsächlich beobachteten Dunklen Materie in Galaxien. Einige dieser Modelle schlagen dunkle Materieteilchen vor, die deutlich leichter sind als die klassischen WIMPs.

Messrekord für leichte dunkle Materieteilchen

Einen wichtigen Schritt zum Aufspüren dieser „Leichtgewichte“ hat CRESST jetzt geleistet: In einem Langzeit-Versuch mit einem Detektor erreichten die Wissenschaftler eine Energieschwelle von 307 Elektronenvolt.

„Dieser Detektor eignet sich nun insbesondere für Messungen zwischen 0,5 und 4 GeV/c2 und hat in diesem Bereich seine Sensitivität um das Hundertfache verbessert“, Dr. Jean-Côme Lanfranchi, Wissenschaftler am Lehrstuhl für Experimentalphysik und Astroteilchenphysik der Technischen Universität München.

„Wir können so Teilchen mit geringerer Masse als die des WIMP entdecken – beispielsweise Dunkle Materie-Teilchen mit einer Masse ähnlich der des Protons, dessen Masse 0,94 GeV/c2 beträgt“, ergänzt Petricca.

Auf Grundlage der jetzt gewonnenen Erkenntnisse statten die Wissenschaftler nun das Experiment mit den neuartigen Detektoren aus. Der nächste Messzyklus von CRESST soll Ende 2015 beginnen und ein bis zwei Jahre dauern.

Das CRESST Experiment

Kernstück aller CRESST-Detektoren ist ein Kristall aus Kalziumwolframat. Treffen die gesuchten Teilchen auf eines der drei Kristallatome (Kalzium, Wolfram und Sauerstoff), messen die Detektoren gleichzeitig die Energie und ein Lichtsignal der Kollision, das Aufschluss über die Art des Teilchens liefert.

Damit sich die minimalen Temperatur- und Lichtsignale aufzeichnen lassen, werden die Detektormodule bis fast auf den absoluten Nullpunkt (-273,15 Grad Celsius) gekühlt. Um störende Hintergrundereignisse auszuschalten, verwenden die CRESST-Wissenschaftler zum einen Materialien mit geringer natürlicher Radioaktivität, zum anderen steht das Experiment im größten Untergrundlabor der Welt, im italienischen Gran-Sasso-Massiv und ist daher weitgehend vor kosmischer Strahlung abgeschirmt.

Was ist neu?

• CRESST arbeitet künftig mit kleineren, und – im Gegensatz zu kommerziell gefertigten – hochreinen Kristallen. Mit den kleineren Kristallen lässt sich die Energieschwelle senken. Die Kristalle werden an der Technischen Universität München gezüchtet. Ihre äußerst geringe Eigenradioaktivität macht das Experiment empfindlicher.
• Die ursprünglichen Bronze-Kristallaufhängungen wurden durch Kalziumwolframat ersetzt. Damit lässt sich die Anzahl unerwünschter Effekte durch natürliche Radioaktivität auf den Metalloberflächen stark verringern.
• Die Präzision des Lichtdetektors wurde optimiert – Kollisionen bereits bekannter Teilchen lassen sich klarer von Kollisionen dunkler Materieteilchen unterscheiden.

An der CRESST-Kollaboration (http://www.cresst.de/people.php) beteiligen sich das Max-Planck-Institut für Physik, die University of Oxford, die Technische Universität München, die Universität Tübingen, das Institut für Hochenergiephysik in Wien, die Technische Universität Wien und die Laboratori Nazionali del Gran Sasso des Istituto Nazionale di Fisica Nucleare. Unterstützt wurden die Arbeiten mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Exzellenzclusters Origin and Structure of the Universe, der Helmholtz Allianz für Astroteilchenphysik (HAP) und des Bundesministeriums für Bildung und Forschung (BMBF).

Publikation:

Results on light dark matter particles with a low threshold CRESST-II detector,
The European Physical Journal C, Sept 2015

Kontakt:

Prof. Dr. Stefan Schönert
Technische Universität München
Physik-Department
James Franck Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12511
E-Mail: schoenert@ph.tum.de

Dr. Ulrich Marsch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden

19.01.2018 | Energie und Elektrotechnik

Wie Pflanzen Licht sehen

19.01.2018 | Biowissenschaften Chemie

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungsnachrichten