Neue Art von Licht in Sicht – Darmstädter Physiker entdecken bislang unbekanntes Hybrid-Licht

Martin Blazek aus der Arbeitsgruppe von Professor Wolfgang Elsäßer hat sogenannte Super-Lumineszenzdioden, kurz: SLD genau unter die Lupe genommen. Ihn interessierte, wie gleichmäßig einzelne Lichtquanten (Photonen) von der SLD emittiert werden. Bei Raumtemperatur erhielt er zunächst das erwartete Resultat:

die SLD sendete keinen gleichmäßigen Strom von Photonen aus, sondern unregelmäßig aufeinander folgende Photonen-Pakete. Dieses Licht gleicht zunächst bildlich gesprochen einem Hörsaal-Ausgang, aus dem in unregelmäßigen Abständen Grüppchen von Studenten, noch intensiv über den Inhalt der Vorlesung diskutierend, heraustreten. Im Gegensatz dazu ist die Situation am Gebäudeausgang relativ gleichmäßig, weil ihr Strom von einer Drehtür reguliert wird.

Physikalisches Paradigma widerlegt

Genau dieses für die SLD Unerwartete geschah, als Blazek dann die Diode auf eine Temperatur von etwa -100 Grad Celsius abkühlte: Die Photonen kamen in einer relativ gleichmäßigen Prozession aus der Leuchtdiode, wie die Studenten nach der Drehtür. Blazek hat die Gleichmäßigkeit gemessen, und zwar in Form der statistischen Wahrscheinlichkeit, mit der ein Photon einem Vorangegangenen in einem bestimmten Abstand folgt. Er fand heraus, dass diese sogenannte Korrelation, das heißt der zeitliche Zusammenhang der Photonen, nahezu der gleiche ist wie bei einem Laser.

Damit hat er ein lange akzeptiertes Paradigma widerlegt, das bislang in der physikalischen Disziplin der Quantenoptik vorherrschte. Dieses verknüpfte eine sogenannte thermische Lichtquelle, wie die Sonne oder eine Glühbirne, die ein breitbandiges Farbenspektrum emittieren, immer mit der zeitlich unregelmäßigen Emission von Photonen-Paketen, wohingegen der Laser einen zeitlich sehr viel reguläreren, fast geordneten, gleichmäßigen Photonenstrom aussendet.

Das Licht aus der kalten SLD ist also quasi ein Zwitter: einerseits hat es immer noch die große spektrale Breite einer thermischen Lichtquelle, andererseits entspricht die Regularität der von ihr emittierten Photonen der eines Lasers. Im ersten Fall sprechen Physiker von spontaner Emission und im letzteren von stimulierter Emission.

„Die Super-Lumineszenzdiode emittiert bei der tiefen Temperatur gewissermaßen in einem Übergangsbereich zwischen der spontanen Emission und der stimulierten Emission“, erklärt Elsäßer. In Zusammenarbeit mit Kollegen der Theoretischen Physik soll nun dieser neue Lichtzustand weiter erforscht werden, um ihn physikalisch zu verstehen, ergänzt der Physik-Professor.

Praktische Anwendung im Blick

Elsäßers Team trachtet unabhängig vom EU-Forschungsprojekt auch bereits danach, das Ergebnis seiner Grundlagenforschung praktisch anwendbar zu machen. Durch den gleichmäßigen Photonenstrom könnte die Genauigkeit der Gewebebilder bei der Krebsdiagnose und somit die Präzision erhöht werden. „Allerdings wäre es sicherlich praktikabler, wenn der Effekt bei Raumtemperatur auftritt“, so Elsäßer. Das Team ist nun auf der Suche nach neuen optischen Emitter-Strukturen und Halbleitermaterialien, die den Effekt schon bei Raumtemperatur zeigen.
Pressekontakt
Prof. Wolfgang Elsäßer
Tel. 06151 / 16 – 6463
Mail: elsaesser@physik.tu-darmstadt.de
MI-Nr. 55/2012, Christian Meier/gek

Media Contact

Jörg Feuck idw

Weitere Informationen:

http://www.tu-darmstadt.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer