Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Art von Halbleiterstrukturierung

16.03.2012
Forscher der ETH Zürich und des CSEM Neuchatel haben zusammen mit italienischen Kollegen vom Politecnico di Milano und von der Università di Milano Bicocca eine neue Methode entwickelt, mit der Strukturen von höchster Perfektion aus völlig verschiedenen Halbleitern hergestellt werden.

Die ersten Resultate dieses Forschungsprojekts wurden soeben im Fachmagazin „Science“ publiziert.


Perspektifische Rasterelektronenmikroskop Aufnahme von ~8 Mikrometer hohen, facettierten Germanium Kristallen, welche auf den Silizium Säulen gewachsen sind. ETH Zürich


Perspektifische Rasterelektronenmikroskop Aufnahme von ~8 Mikrometer hohen, in eine Silizium Scheibe geätzten Säulen. ETH Zürich

Die neuartigen Strukturen können fast beliebig dick sein und werden auf kostengünstigen Halbleiterscheiben hergestellt. Diese Strukturen sind überdies nicht durch irgendwelche Verbindungstechniken aneinander gefügt, sondern monolithisch aufgebaut. Das heisst, sie bestehen aus einem Stück, was sich durch Verfahren des Schichtwachstums erreichen lässt, wie sie in der Mikroelektronik geläufig sind.

Dank der neuen Methode gelingt es, die Kristalldefekte, die üblicherweise beim Aufeinanderschichten von Lagen aus Atomen verschiedener Grösse auftreten, weitgehend zu eliminieren. Störende Substratverbiegung, verursacht durch unterschiedliche thermische Ausdehnung verschiedener Materialien, wird weitgehend vermieden. Die neue Methode unterbindet die fatale Bildung von Rissen in den Schichten, die durch thermische Spannungen entstehen.

Wie eine Tafel Schokolade

Dem Verfahren liegt eine bestechend einfache Idee zugrunde: Anstelle von zusammenhängenden Schichten bestehen die Strukturen aus einem raumfüllenden Verband isolierter Kristalle. Mit Hilfe der Photolithographie definieren die Forscher zunächst ein Muster von Flächen auf einer Siliziumscheibe, das einer Schokoladetafel gleicht, im Gegensatz zur Schokolade jedoch nur einige Mikrometer gross ist. Um diese Flächen herum werden danach tiefe Gräben in die Scheibe geätzt. Dadurch entstehen Substratsäulen, deren Höhe grösser ist als ihr Durchmesser. Anschliessend werden dreidimensionale Halbleiterstrukturen derart auf den Säulen erzeugt, dass zwischen benachbarten Kristallen stets ein minimaler Abstand eingehalten wird. Die Wissenschaftler perfektionierten ihre Methode so, dass sie 50 Mikrometer hohe, defektfreie Germaniumstrukturen auf Siliziumscheiben herstellen konnten. Die dabei gewonnenen Erkenntnisse lassen sich zukünftig auf viele andere Materialkombinationen anwenden.

Bisher unerreichte Anwendungsmöglichkeiten

Die Fähigkeit, nahezu defektfreie, monolithische Halbleiterstrukturen herzustellen, eröffnet bisher unerreichte Anwendungsmöglichkeiten. Bei Röntgendetektoren können Absorber, in welchen Röntgenstrahlung in elektrische Signale umgewandelt werden, direkt auf die Ausleselektronik integriert werden. Mit Absorbern aus hohen, defektfreien Germaniumstrukturen lassen sich empfindliche, energie- und ortsauflösende Detektoren herstellen. Möglicherweise könnten dadurch die Strahlenbelastungen bei medizinischen Anwendungen drastisch gesenkt werden. Weiter lassen sich hocheffiziente, gestapelte photovoltaische Zellen aus Halbleitern herstellen, wobei sich jede Zelle für unterschiedliche Wellenlängenbereiche des Sonnenlichts eignet. Diese Art von Photozellen werden schon heute vor allem in der Raumfahrt verwendet. Da sich die Zellen mit dem beschriebenen Konzept auf Siliziumscheiben herstellen liessen, könnten in Zukunft die teuren, zerbrechlichen und schweren Germaniumsubstrate durch billigere, leichtere und mechanisch stabile Siliziumsubstrate ersetzt werden. Ähnliche Kosteneinsparungen liessen sich bei Leistungshalbleitern erzielen, indem sie auf grossflächige Siliziumscheiben aufgewachsen werden.

Die an den Forschungsarbeiten beteiligten schweizerischen Gruppen erfahren grosszügige Unterstützung durch das Nano-Tera Projekt «NEXRAY», eines dessen Ziele die Entwicklung neuartiger Röntgendetektoren ist. «Das CSEM ist stolz darauf ein solches interdisziplinäres Projekt mit den Partnern CSEM, EMPA und ETH Zürich zu koordinieren, das zu neuartigen Bauelementen führen wird», sagt Alex Dommann, der Programm Manager für MEMS am CSEM.

Original: C.V. Falub et al., Scaling hetero-epitaxy from layers to three-dimensional crystals, Science Vol. 335 no. 6074 pp. 1330-1334, doi: 10.1126/science.1217666

ETH Zürich
PD Dr. Hans von Känel
Laboratorium für Festkörperphysik
Telefon: +41 44 633 22 61
vonkaenel@solid.phys.ethz.ch

Franziska Schmid | ETH Zürich
Weitere Informationen:
http://www.ethz.ch/media/detail?pr_id=1092

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive