Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Negative Quantenkleckse im Eierkarton

28.02.2014

Licht-Materie-Quantenteilchen können in Halbleitern durch Töne beeinflusst werden. Berliner Physikern ist es jetzt erstmals gelungen, die Teilchen in einer zweidimensionalen Gitterstruktur aus Schallwellen, die einem Eierkarton ähnelt, einzufangen und zu manipulieren.

Dabei verhielten sich die Quantenteilchen überraschenderweise so, als hätten sie eine negative Masse. Das Verfahren könnte hilfreich für den Bau von optischen Computern sein, aber auch neuartige Konzepte in der Kommunikationstechnik ermöglichen.


Halbleiter, der einen Resonator für Polaritonen bildet.

PDI

Dr. Edgar Cerda und sein Team am Paul-Drude-Institut für Festkörperelektronik in Berlin erzeugten in Zusammenarbeit mit Forschern der Universität Sheffield eine Gitterstruktur durch zwei im rechten Winkel eingestrahlte Schallwellen. Dies gelang mit einer besonders ausgefeilten Art von Halbleiterkristall:

Das Team im PDI dampfte auf eine Galliumarsenid-Unterlage rund 80 Schichten des Halbleitermaterials auf, die jeweils genau definiert zwischen zehn und 200 Nanometer dick sind und unterschiedliche Anteile an Aluminium enthalten. Das Aluminium verändert den Brechungsindex der Schichten.

Durch das Einstrahlen von Lichtteilchen (Photonen) entsteht ein besonderer Quantenzustand. Die Photonen verkoppeln sich mit speziellen Elektronenzuständen im Halbleiter, sogenannten Exzitonen. Die daraus entstehenden Licht-Materie-Quasiteilchen nennen die Physiker Polaritonen.

Dabei werden ständig Photonen aufgenommen und wieder abgegeben. Sobald genügend Polaritonen in den Halbleiterschichten, dem optischen Resonator, erzeugt worden sind, verhalten sie sich nicht mehr wie individuelle Teilchen, sondern verschmelzen zu einem Riesenpolariton. Vorausgesagt hatten ähnliche makroskopische Quantenzustände nicht mehr unterscheidbarer Teilchen Albert Einstein und der indische Physiker Satyendranath Bose bereits 1924. Im Labor nachgewiesen werden konnte ein solches Bose-Einstein-Kondensat allerdings erst 1995.

Versetzt man nun die Oberfläche des Halbleiters in akustische Schwingungen, treten die Polaritonen mit diesen in Wechselwirkung. Erstmals konnten Cerda und sein Team dabei beobachten, dass Polaritonen, die sich in eine bestimmte Richtung des Gitters bewegen, so verhalten, als hätten sie eine negative Masse. Durch diesen negativen Masse-Effekt, können diese speziellen Polaritonen leichter zusammenbleiben und ein ganz besonderes Riesenpolariton formen. Negative Massezustände konnten bereits vorher in reinen Photoniksystemen beobachtet werden, erstmals aber wurde es jetzt mit Polaritonen demonstriert.

„Diese Technik der Schallwellen an der Oberfläche ist sehr flexibel“, erläutert Cerda. „Wir können die Kreuzgitter in verschiedenen Abmessungen und Tiefen erzeugen, um die optimalen Konditionen für das Superpolariton mit negativer Masse zu erreichen.“ Damit stehe den Forschern eine ausgesprochen flexible Plattform zur Verfügung, mit der faszinierende physikalische Phänomene untersucht werden könnten. So gebe es bereits theoretische Ansätze und Überlegungen zur Erzeugung anderer exotischer Zustände. „Sie können vielleicht genutzt werden, um Informationen unkonventionell zu verarbeiten.“ Ein weiterer Ansatzpunkt wäre für Cerda ein Mikrochip, auf dem sich Quantenpunkte einzeln in der gekreuzten Gitterstruktur einfangen lassen.

Momentan arbeiten die Physiker gezwungenermaßen noch bei extrem tiefen Temperaturen von rund sechs Grad Kelvin. „Galliumarsenid ist bereits in vielen Anwendungen üblich und deshalb in der notwendigen Reinheit erhältlich“, sagt Cerda. Der Physiker hofft aber, dass seine Arbeitsgruppe später mit ähnlichen Kristallen aus Galliumnitrat den gleichen Effekt auch bei Raumtemperatur erzielen kann.

Phys. Rev. Lett. 111, 146401 (2013)
DOI: 10.1103/PhysRevLett.111.146401

Kontakt: Paul-Drude-Institut für Festkörperelektronik (PDI)
Hausvogteiplatz 5-7, 10117 Berlin
Dr. Edgar Cerda
Tel.: 030-20377 504

Abb. 1: Das Bild links zeigt den aus vielen Schichten bestehenden Halbleiter, der einen Resonator für Polaritonen bildet. Durch akustische Wellen (AW1 überlagert mit AW2) wird eine Gitterstruktur auf der Oberfläche erzeugt. Die Formierung der Superpolaritonen mit negativer Masse zeigt sich in den roten Bereichen des rechten Diagramms. Grafik: PDI

Das Paul-Drude-Institut für Festkörperelektronik (PDI) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Weitere Informationen:

http://www.pdi-berlin.de - Paul-Drude-Institut
http://www.fv-berlin.de - Forschungsverbund Berlin e. V.

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Durchbruch mit einer Kette aus Goldatomen
17.02.2017 | Universität Konstanz

nachricht Zukunftsmusik: Neues Funktionsprinzip zur Erzeugung der „Dritten Harmonischen“
17.02.2017 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung