Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Negative Quantenkleckse im Eierkarton

28.02.2014

Licht-Materie-Quantenteilchen können in Halbleitern durch Töne beeinflusst werden. Berliner Physikern ist es jetzt erstmals gelungen, die Teilchen in einer zweidimensionalen Gitterstruktur aus Schallwellen, die einem Eierkarton ähnelt, einzufangen und zu manipulieren.

Dabei verhielten sich die Quantenteilchen überraschenderweise so, als hätten sie eine negative Masse. Das Verfahren könnte hilfreich für den Bau von optischen Computern sein, aber auch neuartige Konzepte in der Kommunikationstechnik ermöglichen.


Halbleiter, der einen Resonator für Polaritonen bildet.

PDI

Dr. Edgar Cerda und sein Team am Paul-Drude-Institut für Festkörperelektronik in Berlin erzeugten in Zusammenarbeit mit Forschern der Universität Sheffield eine Gitterstruktur durch zwei im rechten Winkel eingestrahlte Schallwellen. Dies gelang mit einer besonders ausgefeilten Art von Halbleiterkristall:

Das Team im PDI dampfte auf eine Galliumarsenid-Unterlage rund 80 Schichten des Halbleitermaterials auf, die jeweils genau definiert zwischen zehn und 200 Nanometer dick sind und unterschiedliche Anteile an Aluminium enthalten. Das Aluminium verändert den Brechungsindex der Schichten.

Durch das Einstrahlen von Lichtteilchen (Photonen) entsteht ein besonderer Quantenzustand. Die Photonen verkoppeln sich mit speziellen Elektronenzuständen im Halbleiter, sogenannten Exzitonen. Die daraus entstehenden Licht-Materie-Quasiteilchen nennen die Physiker Polaritonen.

Dabei werden ständig Photonen aufgenommen und wieder abgegeben. Sobald genügend Polaritonen in den Halbleiterschichten, dem optischen Resonator, erzeugt worden sind, verhalten sie sich nicht mehr wie individuelle Teilchen, sondern verschmelzen zu einem Riesenpolariton. Vorausgesagt hatten ähnliche makroskopische Quantenzustände nicht mehr unterscheidbarer Teilchen Albert Einstein und der indische Physiker Satyendranath Bose bereits 1924. Im Labor nachgewiesen werden konnte ein solches Bose-Einstein-Kondensat allerdings erst 1995.

Versetzt man nun die Oberfläche des Halbleiters in akustische Schwingungen, treten die Polaritonen mit diesen in Wechselwirkung. Erstmals konnten Cerda und sein Team dabei beobachten, dass Polaritonen, die sich in eine bestimmte Richtung des Gitters bewegen, so verhalten, als hätten sie eine negative Masse. Durch diesen negativen Masse-Effekt, können diese speziellen Polaritonen leichter zusammenbleiben und ein ganz besonderes Riesenpolariton formen. Negative Massezustände konnten bereits vorher in reinen Photoniksystemen beobachtet werden, erstmals aber wurde es jetzt mit Polaritonen demonstriert.

„Diese Technik der Schallwellen an der Oberfläche ist sehr flexibel“, erläutert Cerda. „Wir können die Kreuzgitter in verschiedenen Abmessungen und Tiefen erzeugen, um die optimalen Konditionen für das Superpolariton mit negativer Masse zu erreichen.“ Damit stehe den Forschern eine ausgesprochen flexible Plattform zur Verfügung, mit der faszinierende physikalische Phänomene untersucht werden könnten. So gebe es bereits theoretische Ansätze und Überlegungen zur Erzeugung anderer exotischer Zustände. „Sie können vielleicht genutzt werden, um Informationen unkonventionell zu verarbeiten.“ Ein weiterer Ansatzpunkt wäre für Cerda ein Mikrochip, auf dem sich Quantenpunkte einzeln in der gekreuzten Gitterstruktur einfangen lassen.

Momentan arbeiten die Physiker gezwungenermaßen noch bei extrem tiefen Temperaturen von rund sechs Grad Kelvin. „Galliumarsenid ist bereits in vielen Anwendungen üblich und deshalb in der notwendigen Reinheit erhältlich“, sagt Cerda. Der Physiker hofft aber, dass seine Arbeitsgruppe später mit ähnlichen Kristallen aus Galliumnitrat den gleichen Effekt auch bei Raumtemperatur erzielen kann.

Phys. Rev. Lett. 111, 146401 (2013)
DOI: 10.1103/PhysRevLett.111.146401

Kontakt: Paul-Drude-Institut für Festkörperelektronik (PDI)
Hausvogteiplatz 5-7, 10117 Berlin
Dr. Edgar Cerda
Tel.: 030-20377 504

Abb. 1: Das Bild links zeigt den aus vielen Schichten bestehenden Halbleiter, der einen Resonator für Polaritonen bildet. Durch akustische Wellen (AW1 überlagert mit AW2) wird eine Gitterstruktur auf der Oberfläche erzeugt. Die Formierung der Superpolaritonen mit negativer Masse zeigt sich in den roten Bereichen des rechten Diagramms. Grafik: PDI

Das Paul-Drude-Institut für Festkörperelektronik (PDI) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Weitere Informationen:

http://www.pdi-berlin.de - Paul-Drude-Institut
http://www.fv-berlin.de - Forschungsverbund Berlin e. V.

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Anwender-Workshops „Laserbearbeitung von Faserverbundwerkstoffen“

20.11.2017 | Seminare Workshops

Hand aufs Herz - was wissen wir über herzgesunde Lebensmittel?

20.11.2017 | Unternehmensmeldung

Transparente Beschichtung für Alltagsanwendungen

20.11.2017 | Materialwissenschaften