Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Negative Quantenkleckse im Eierkarton

28.02.2014

Licht-Materie-Quantenteilchen können in Halbleitern durch Töne beeinflusst werden. Berliner Physikern ist es jetzt erstmals gelungen, die Teilchen in einer zweidimensionalen Gitterstruktur aus Schallwellen, die einem Eierkarton ähnelt, einzufangen und zu manipulieren.

Dabei verhielten sich die Quantenteilchen überraschenderweise so, als hätten sie eine negative Masse. Das Verfahren könnte hilfreich für den Bau von optischen Computern sein, aber auch neuartige Konzepte in der Kommunikationstechnik ermöglichen.


Halbleiter, der einen Resonator für Polaritonen bildet.

PDI

Dr. Edgar Cerda und sein Team am Paul-Drude-Institut für Festkörperelektronik in Berlin erzeugten in Zusammenarbeit mit Forschern der Universität Sheffield eine Gitterstruktur durch zwei im rechten Winkel eingestrahlte Schallwellen. Dies gelang mit einer besonders ausgefeilten Art von Halbleiterkristall:

Das Team im PDI dampfte auf eine Galliumarsenid-Unterlage rund 80 Schichten des Halbleitermaterials auf, die jeweils genau definiert zwischen zehn und 200 Nanometer dick sind und unterschiedliche Anteile an Aluminium enthalten. Das Aluminium verändert den Brechungsindex der Schichten.

Durch das Einstrahlen von Lichtteilchen (Photonen) entsteht ein besonderer Quantenzustand. Die Photonen verkoppeln sich mit speziellen Elektronenzuständen im Halbleiter, sogenannten Exzitonen. Die daraus entstehenden Licht-Materie-Quasiteilchen nennen die Physiker Polaritonen.

Dabei werden ständig Photonen aufgenommen und wieder abgegeben. Sobald genügend Polaritonen in den Halbleiterschichten, dem optischen Resonator, erzeugt worden sind, verhalten sie sich nicht mehr wie individuelle Teilchen, sondern verschmelzen zu einem Riesenpolariton. Vorausgesagt hatten ähnliche makroskopische Quantenzustände nicht mehr unterscheidbarer Teilchen Albert Einstein und der indische Physiker Satyendranath Bose bereits 1924. Im Labor nachgewiesen werden konnte ein solches Bose-Einstein-Kondensat allerdings erst 1995.

Versetzt man nun die Oberfläche des Halbleiters in akustische Schwingungen, treten die Polaritonen mit diesen in Wechselwirkung. Erstmals konnten Cerda und sein Team dabei beobachten, dass Polaritonen, die sich in eine bestimmte Richtung des Gitters bewegen, so verhalten, als hätten sie eine negative Masse. Durch diesen negativen Masse-Effekt, können diese speziellen Polaritonen leichter zusammenbleiben und ein ganz besonderes Riesenpolariton formen. Negative Massezustände konnten bereits vorher in reinen Photoniksystemen beobachtet werden, erstmals aber wurde es jetzt mit Polaritonen demonstriert.

„Diese Technik der Schallwellen an der Oberfläche ist sehr flexibel“, erläutert Cerda. „Wir können die Kreuzgitter in verschiedenen Abmessungen und Tiefen erzeugen, um die optimalen Konditionen für das Superpolariton mit negativer Masse zu erreichen.“ Damit stehe den Forschern eine ausgesprochen flexible Plattform zur Verfügung, mit der faszinierende physikalische Phänomene untersucht werden könnten. So gebe es bereits theoretische Ansätze und Überlegungen zur Erzeugung anderer exotischer Zustände. „Sie können vielleicht genutzt werden, um Informationen unkonventionell zu verarbeiten.“ Ein weiterer Ansatzpunkt wäre für Cerda ein Mikrochip, auf dem sich Quantenpunkte einzeln in der gekreuzten Gitterstruktur einfangen lassen.

Momentan arbeiten die Physiker gezwungenermaßen noch bei extrem tiefen Temperaturen von rund sechs Grad Kelvin. „Galliumarsenid ist bereits in vielen Anwendungen üblich und deshalb in der notwendigen Reinheit erhältlich“, sagt Cerda. Der Physiker hofft aber, dass seine Arbeitsgruppe später mit ähnlichen Kristallen aus Galliumnitrat den gleichen Effekt auch bei Raumtemperatur erzielen kann.

Phys. Rev. Lett. 111, 146401 (2013)
DOI: 10.1103/PhysRevLett.111.146401

Kontakt: Paul-Drude-Institut für Festkörperelektronik (PDI)
Hausvogteiplatz 5-7, 10117 Berlin
Dr. Edgar Cerda
Tel.: 030-20377 504

Abb. 1: Das Bild links zeigt den aus vielen Schichten bestehenden Halbleiter, der einen Resonator für Polaritonen bildet. Durch akustische Wellen (AW1 überlagert mit AW2) wird eine Gitterstruktur auf der Oberfläche erzeugt. Die Formierung der Superpolaritonen mit negativer Masse zeigt sich in den roten Bereichen des rechten Diagramms. Grafik: PDI

Das Paul-Drude-Institut für Festkörperelektronik (PDI) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Weitere Informationen:

http://www.pdi-berlin.de - Paul-Drude-Institut
http://www.fv-berlin.de - Forschungsverbund Berlin e. V.

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise