Ionen sind unverzichtbare Werkzeuge in der Chipherstellung, man kann mit den elektrisch geladenen Atomen aber auch Nano-Siebe mit feinst verteilten Poren herstellen, wenn man ihnen vor dem Beschuss besonders viele Elektronen entzieht. Solche hochgeladenen Ionen verlieren auf dem Weg durch eine nur einen Nanometer dünne Membran entweder erstaunlich viel oder fast gar keine Energie. Über diese Entdeckung, die einen wichtigen Schritt hin zu neuartigen elektronischen Bauteilen aus Graphen bedeutet, berichten Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) und der TU Wien in der Fachzeitschrift „Physical Review Letters“ (DOI: 10.1103/PhysRevLett.112.068103).
Hochgeladene Ionen richten zwar räumlich sehr begrenzt, dafür aber umso effizienter Schaden auf einer Materialoberfläche an. Das macht sie zu einem idealen Werkzeug für Spezialaufgaben wie etwa die, hauchdünne Folien aus Kohlenstoff mit nur einem Nanometer Dicke zu perforieren (1 Nanometer = 1 Millionstel Millimeter). So entsteht ein technologisch nutzbares Nano-Sieb, um beispielsweise unterschiedliche Gase zu trennen.
„Man kann den Beschuss eines Materials mit Ionen mit den Stößen von Billardkugeln vergleichen“, so Richard Wilhelm, Doktorand im HZDR. „Ein professioneller Spieler weiß genau, in welchem Winkel er eine Kugel treffen muss, um seinen Zug zu machen. Er berechnet dabei auch die Energie, die von einer Kugel auf eine oder mehrere andere übertragen werden soll.“ Ähnlich verhält es sich mit Ionen, die mit den Atomen im Material kollidieren. Durch sehr viele Stöße werden die Ionen auf ihrem Weg nach und nach abgebremst und verlieren stetig Energie – wie eine Kugel, die in einem Baumstamm eindringt und dort zum Stillstand kommt.
Für ein hauchdünnes Material, das aus nur wenigen Atomlagen besteht, trifft diese Analogie jedoch nicht zu – so das erstaunliche Ergebnis der aktuellen Experimente im Ionenstrahlzentrum des HZDR. Erstmals haben Wilhelm und seine Kollegen aus Dresden und Wien in Experimenten beobachtet, dass hochgeladene Ionen entweder fast unbeeinflusst durch eine Nano-Membran fliegen oder aber erstaunlich viel Energie dabei verlieren. Bisher ging man dagegen davon aus, dass Ionen im Mittel immer gleich viel Energie verlieren. „Mit unseren Experimenten konnten wir zeigen, dass der Energieverlust im Material in erheblichem Maße vom Ladungszustand der Ionen abhängt. Dabei vermuten wir eine generelle Relation, die man bisher bei den üblicherweise verwendeten dickeren Materialien und den geringen Ladungszuständen der Ionen nicht beobachten konnte“, erklärt Richard Wilhelm.
Um den neu entdeckten Effekt überhaupt sehen zu können, darf die Membran nicht dicker als ein Nanometer sein – aufwendig hergestellt wurde die auf einem Träger frei aufgehängte Membran aus Kohlenstoff an der Universität Bielefeld. Zudem müssen die Ionen eine hohe positive Ladung aufweisen, das heißt, dass ihnen zuvor viele Elektronen entzogen worden sind. Zum Einsatz kamen bis zu 30-fach geladene Xenon-Ionen. Treffen die Xenon-Ionen auf die superdünne Membran, kommt es zu zwei unterschiedlichen Arten von Ereignissen. Während ein Ion quasi ungehindert zwischen den Kohlenstoff-Atomen der Nano-Membran hindurchfliegen kann, kollidiert ein anderes Ion mit einem der Atome im Material. Dabei durchquert es die Elektronenwolke des Atoms und saugt die negativ geladenen Elektronen auf. Dieser Elektroneneinfang führt beinahe zur Neutralisation des Ions mit der Folge, dass es erheblich abgebremst wird. Abhängig vom Winkel, in dem das Ion nach dem Stoß weiterfliegt, beträgt der Energieverlust bis zu zehn Prozent.
„Wundermaterial“ Graphen
Als nächsten Schritt wollen die Forscher vom Helmholtz-Zentrum Dresden-Rossendorf und der TU Wien mit dem vielversprechenden Material Graphen arbeiten. Graphen ist Kohlenstoff, der nur eine Atomlage dick ist. Es hat fast exotische Eigenschaften, ist extrem stabil, dabei durchsichtig und ein Metall. „Mit Graphen beschäftigen sich derzeit zwar sehr viele Gruppen weltweit, aber nur sehr wenige bauen in das zweidimensionale Material Fremdatome ein. Wenn dies routinemäßig durch Ionenimplantation gelänge, könnte man neuartige elektronische Bauteile mit unverhofften Fähigkeiten herstellen“, erläutert Richard Wilhelm. Auch für die Experimente mit Graphen stehen Im Ionenstrahlzentrum des HZDR gleich mehrere Anlagen zur Erzeugung hochgeladener Ionen zur Verfügung, und die TU Wien ist als langjähriger Forschungspartner wieder tatkräftig mit dabei.
Publikationen:
R. A. Wilhelm, E. Gruber u.a.: Charge exchange and energy loss of slow highly charges ions in 1 nm thick carbon nanomembranes, in: Physical Review Letters 112 (2014), 153201, DOI-Link: http://dx.doi.org/10.1103/PhysRevLett.112.153201.
R. Ritter, R. A. Wilhelm, M. Stöger-Pollach u.a.: Fabrication of nanopores in 1 nm thick carbon nanomembranes with slow highly charged ions, in: Applied Physics Letters 102, 063112 (2013), DOI: 10.1063/1.4792511
Weitere Informationen:
Richard Wilhelm | Dr. Stefan Facsko
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260 - 2834 | - 2987
E-Mail r.wilhelm@hzdr.de | s.facsko@hzdr.de
Medienkontakt:
Dr. Christine Bohnet | Pressesprecherin
Tel. +49 351 260 - 2450 oder +49 160 969 288 56
E-Mail c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden | www.hzdr.de
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Zur Beantwortung dieser wissenschaftlichen Fragen werden Großgeräte mit einzigartigen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.
Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon ca. 500 Wissenschaftler inklusive 150 Doktoranden.
https://www.hzdr.de/db/Cms?pNid=99&pOid=41632
Simon Schmitt | Helmholtz-Zentrum
Weitere Berichte zu: > Elektronen > Energie > Graphen > HZDR > Helmholtz-Zentrum > Ion > Ionen > Ionenstrahlzentrum > Kohlenstoff > Material > Materie > Membran > Nano-Material > Nano-Membran > Nanometer > Winkel > ions
Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen
Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart
Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können
Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...
Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.
Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.
Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Anzeige
Anzeige
Internationale Konferenz zur Digitalisierung
19.04.2018 | Veranstaltungen
124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus
19.04.2018 | Veranstaltungen
DFG unterstützt Kongresse und Tagungen - Juni 2018
17.04.2018 | Veranstaltungen
Grösster Elektrolaster der Welt nimmt Arbeit auf
20.04.2018 | Interdisziplinäre Forschung
Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Physik Astronomie
Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas
20.04.2018 | Geowissenschaften