Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Hillocks: Wenn statt Löchern Berge wachsen

18.09.2012
Elektrisch geladene Teilchen dienen als Werkzeug für die Nanotechnologie. Die TU Wien und das Helmholtz-Zentrum Dresden-Rossendorf konnten nun wichtige Fragen über die Wirkung von Ionen auf Oberflächen klären.
Ionenstrahlen werden schon lange eingesetzt um Oberflächen zu manipulieren. An der TU Wien werden Ionen mit so hoher Energie untersucht, dass bereits ein einziges der Teilchen drastische Veränderungen auf der damit beschossenen Oberfläche hervorruft. Nach aufwändigen Forschungen konnte nun erklärt werden, warum sich dabei manchmal Einschusskrater, in anderen Fällen hingegen Erhebungen bilden. Die Untersuchungen wurden kürzlich im Fachjournal „Physical Review Letters“ publiziert.

Ladung statt Wucht

„Will man möglichst viel Energie auf einem kleinen Punkt der Oberfläche einbringen, bringt es wenig, die Oberfläche einfach mit besonders schnellen Atomen zu beschießen“, erklärt Prof. Friedrich Aumayr vom Institut für Angewandte Physik der TU Wien. „Schnelle Teilchen dringen tief in das Material ein und verteilen ihre Energie daher über einen weiten Bereich.“
Wenn man den einzelnen Atomen allerdings zuerst viele Elektronen entreißt und die hochgeladenen Teilchen dann mit der Materialoberfläche kollidieren lässt, sind die Auswirkungen dramatisch: Die Energie, die man vorher aufwenden musste um die Atome zu ionisieren wird dann in einer Region von wenigen Nanometern Durchmesser freigesetzt.

Das kann bewirken, dass ein winziger Bereich des Materials schmilzt, seine geordnete atomare Struktur verliert und sich ausdehnt. Das Resultat sind sogenannte Nano-Hillocks, kleine Hügel auf der Materialoberfläche. Die hohe elektrische Ladung, die in Form des Ions in das Material eingebracht wird, hat einen starken Einfluss auf die Elektronen des Materials. Das führt dazu, dass sich die Atome aus ihren Plätzen lösen. Reicht die Energie nicht aus um das Material lokal zum Schmelzen zu bringen, können zwar keine Nano-Hillocks, aber kleine Löcher in der Oberfläche entstehen.

Um so ein detailliertes Bild von den Vorgängen an der Materialoberfläche zu bekommen, waren nicht nur aufwändige Experimente sondern auch Computersimulationen und theoretische Arbeit nötig. Friedrich Aumayr und sein Dissertant Robert Ritter arbeiteten daher eng mit Prof. Joachim Burgdörfer, Christoph Lemell und Georg Wachter vom Institut für Theoretische Physik der TU Wien zusammen. Die Experimente wurden in Kooperation mit dem Helmholtz-Zentrum Dresden-Rossendorf durchgeführt.

Potentielle und Kinetische Energie

„Wir haben zwei verschiedene Formen von Energie zur Verfügung“, erklärt Friedrich Aumayr: „Einerseits die potentielle Energie der Ionen, die sie aufgrund ihrer elektrischen Ladung besitzen, andererseits die Bewegungsenergie, die sie aufgrund ihrer Geschwindigkeit haben.“ Abhängig von diesen beiden Energie-Größen hinterlassen die Ionen unterschiedliche Spuren auf der Oberfläche.

Lange Zeit schien die Vorstellung, die man von diesen Prozessen hatte allerdings nicht so recht mit den Messungen übereinzustimmen. Verschiedene Materialien schienen sich unter Ionenbeschuss ganz unterschiedlich zu verhalten, manchmal war überhaupt keine Veränderung der Oberfläche zu sehen, auch wenn man eigentlich deutliche Löcher erwartet hätte.

Säure macht Oberflächen-Verletzungen sichtbar
„Das Rätsel konnte allerdings gelöst werden, in dem wir die Oberflächen kurz mit Säure behandelten“, sagt Friedrich Aumayr. „Dabei zeigte sich, dass manche Oberflächen durch den Ionenbeschuss zwar verändert worden waren, die Atome hatten sich aber noch nicht völlig von der Oberfläche gelöst. Die mit einem Atomkraftmikroskop erstellten Bilder zeigten daher keine Veränderung.“ Durch Säurebehandlung wurden genau diese getroffenen Stellen allerdings viel stärker angegriffen als die feste, unverletzte Struktur – die Löcher wurden sichtbar.

Vermutung bestätigt

„Für uns war das der letzte große Puzzlestein für das Verständnis der Wechselwirkung zwischen den Ionen und der Oberfläche“, sagt Aumayr. „Durch die Untersuchung mit Hilfe der Säure können wir nun viel besser nachweisen, bei welchen Energien die Oberfläche wie stark verändert wird – damit ergibt sich für uns nun endlich ein geschlossenes Bild.“ Das Entstehen der Hillocks hängt stark vom Ladungszustand, aber kaum von der Geschwindigkeit der Ionen-Geschoße ab. Das Auftreten von Löchern hingegen wird maßgeblich durch die Bewegungsenergie der Ionen bestimmt. „Vermutet hatten wir das schon lange. Meine Studenten haben mir sogar vor drei Jahren schon eine Geburtstagstorte geschenkt, die genau diesen Zusammenhang darstellte – in Schokolade und Zuckerguss“, verrät Aumayr. Damals war das noch Spekulation – doch nun, nach aufwändigen Messungen, wurde ein beinahe identisches Diagramm im Fachjournal „Physical Review Letters“ publiziert.

Publikation: A.S. El-Said, R.A. Wilhelm, R. Heller, S. Facsko, C. Lemell, G. Wachter, J. Burgdörfer, R. Ritter, F. Aumayr Phase diagram for nanostructuring CaF2 surfaces by slow highly charged ions Physical Review Letters 109 (2012) 117602 (5 pages): http://link.aps.org/doi/10.1103/PhysRevLett.109.117602
Bilderdownload:
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/nano_hillocks/
Rückfragehinweis:
Prof. Friedrich Aumayr
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13430
friedrich.aumayr@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://link.aps.org/doi/10.1103/PhysRevLett.109.117602

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik