Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Hillocks: Wenn statt Löchern Berge wachsen

18.09.2012
Elektrisch geladene Teilchen dienen als Werkzeug für die Nanotechnologie. Die TU Wien und das Helmholtz-Zentrum Dresden-Rossendorf konnten nun wichtige Fragen über die Wirkung von Ionen auf Oberflächen klären.
Ionenstrahlen werden schon lange eingesetzt um Oberflächen zu manipulieren. An der TU Wien werden Ionen mit so hoher Energie untersucht, dass bereits ein einziges der Teilchen drastische Veränderungen auf der damit beschossenen Oberfläche hervorruft. Nach aufwändigen Forschungen konnte nun erklärt werden, warum sich dabei manchmal Einschusskrater, in anderen Fällen hingegen Erhebungen bilden. Die Untersuchungen wurden kürzlich im Fachjournal „Physical Review Letters“ publiziert.

Ladung statt Wucht

„Will man möglichst viel Energie auf einem kleinen Punkt der Oberfläche einbringen, bringt es wenig, die Oberfläche einfach mit besonders schnellen Atomen zu beschießen“, erklärt Prof. Friedrich Aumayr vom Institut für Angewandte Physik der TU Wien. „Schnelle Teilchen dringen tief in das Material ein und verteilen ihre Energie daher über einen weiten Bereich.“
Wenn man den einzelnen Atomen allerdings zuerst viele Elektronen entreißt und die hochgeladenen Teilchen dann mit der Materialoberfläche kollidieren lässt, sind die Auswirkungen dramatisch: Die Energie, die man vorher aufwenden musste um die Atome zu ionisieren wird dann in einer Region von wenigen Nanometern Durchmesser freigesetzt.

Das kann bewirken, dass ein winziger Bereich des Materials schmilzt, seine geordnete atomare Struktur verliert und sich ausdehnt. Das Resultat sind sogenannte Nano-Hillocks, kleine Hügel auf der Materialoberfläche. Die hohe elektrische Ladung, die in Form des Ions in das Material eingebracht wird, hat einen starken Einfluss auf die Elektronen des Materials. Das führt dazu, dass sich die Atome aus ihren Plätzen lösen. Reicht die Energie nicht aus um das Material lokal zum Schmelzen zu bringen, können zwar keine Nano-Hillocks, aber kleine Löcher in der Oberfläche entstehen.

Um so ein detailliertes Bild von den Vorgängen an der Materialoberfläche zu bekommen, waren nicht nur aufwändige Experimente sondern auch Computersimulationen und theoretische Arbeit nötig. Friedrich Aumayr und sein Dissertant Robert Ritter arbeiteten daher eng mit Prof. Joachim Burgdörfer, Christoph Lemell und Georg Wachter vom Institut für Theoretische Physik der TU Wien zusammen. Die Experimente wurden in Kooperation mit dem Helmholtz-Zentrum Dresden-Rossendorf durchgeführt.

Potentielle und Kinetische Energie

„Wir haben zwei verschiedene Formen von Energie zur Verfügung“, erklärt Friedrich Aumayr: „Einerseits die potentielle Energie der Ionen, die sie aufgrund ihrer elektrischen Ladung besitzen, andererseits die Bewegungsenergie, die sie aufgrund ihrer Geschwindigkeit haben.“ Abhängig von diesen beiden Energie-Größen hinterlassen die Ionen unterschiedliche Spuren auf der Oberfläche.

Lange Zeit schien die Vorstellung, die man von diesen Prozessen hatte allerdings nicht so recht mit den Messungen übereinzustimmen. Verschiedene Materialien schienen sich unter Ionenbeschuss ganz unterschiedlich zu verhalten, manchmal war überhaupt keine Veränderung der Oberfläche zu sehen, auch wenn man eigentlich deutliche Löcher erwartet hätte.

Säure macht Oberflächen-Verletzungen sichtbar
„Das Rätsel konnte allerdings gelöst werden, in dem wir die Oberflächen kurz mit Säure behandelten“, sagt Friedrich Aumayr. „Dabei zeigte sich, dass manche Oberflächen durch den Ionenbeschuss zwar verändert worden waren, die Atome hatten sich aber noch nicht völlig von der Oberfläche gelöst. Die mit einem Atomkraftmikroskop erstellten Bilder zeigten daher keine Veränderung.“ Durch Säurebehandlung wurden genau diese getroffenen Stellen allerdings viel stärker angegriffen als die feste, unverletzte Struktur – die Löcher wurden sichtbar.

Vermutung bestätigt

„Für uns war das der letzte große Puzzlestein für das Verständnis der Wechselwirkung zwischen den Ionen und der Oberfläche“, sagt Aumayr. „Durch die Untersuchung mit Hilfe der Säure können wir nun viel besser nachweisen, bei welchen Energien die Oberfläche wie stark verändert wird – damit ergibt sich für uns nun endlich ein geschlossenes Bild.“ Das Entstehen der Hillocks hängt stark vom Ladungszustand, aber kaum von der Geschwindigkeit der Ionen-Geschoße ab. Das Auftreten von Löchern hingegen wird maßgeblich durch die Bewegungsenergie der Ionen bestimmt. „Vermutet hatten wir das schon lange. Meine Studenten haben mir sogar vor drei Jahren schon eine Geburtstagstorte geschenkt, die genau diesen Zusammenhang darstellte – in Schokolade und Zuckerguss“, verrät Aumayr. Damals war das noch Spekulation – doch nun, nach aufwändigen Messungen, wurde ein beinahe identisches Diagramm im Fachjournal „Physical Review Letters“ publiziert.

Publikation: A.S. El-Said, R.A. Wilhelm, R. Heller, S. Facsko, C. Lemell, G. Wachter, J. Burgdörfer, R. Ritter, F. Aumayr Phase diagram for nanostructuring CaF2 surfaces by slow highly charged ions Physical Review Letters 109 (2012) 117602 (5 pages): http://link.aps.org/doi/10.1103/PhysRevLett.109.117602
Bilderdownload:
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/nano_hillocks/
Rückfragehinweis:
Prof. Friedrich Aumayr
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13430
friedrich.aumayr@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://link.aps.org/doi/10.1103/PhysRevLett.109.117602

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften