Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Muskelfasern machen mechanische Belastungen sichtbar

20.12.2010
Seit Jahrzehnten nutzen wir Materialien aus Kunststoffen. Doch bei der Weiterentwicklung stehen die Hersteller vor einem Problem: Wesentliche Einflüsse der mikroskopischen Materialstruktur auf die mechanischen Materialeigenschaften können nicht direkt beobachtet werden. Die synthetischen Polymermoleküle sind zu klein, um sie bei mechanischen Experimenten mikroskopisch beobachten zu können. Ein Team von Physikern um Professor Andreas Bausch von der Technischen Universität München (TUM) hat nun ein Verfahren entwickelt, mit dem solche Messungen möglich werden. In Nature Communications stellen sie ihre Ergebnisse vor.

Streckt man eine Folie aus Polyethylen stark, so wird sie reißfester. Einkaufstüten werden so erheblich belastbarer. Der Effekt wird einer Neuordnung der Polymerketten zugeschrieben. Manche elastischen Polymere werden durch eine häufig wiederkehrende Belastung weicher. Dieses Verhalten wurde nach seinem Entdecker Mullins-Effekt genannt. Doch was die Polymerketten bei mechanischer Belastung genau tun, ist bisher nicht ausreichend verstanden. Ein Grund dafür ist, dass synthetische Polymere zu klein sind, um sie mit mikroskopischen Methoden während der mechanischen Belastungsexperimente zu beobachten. Ein besseres Verständnis der Vorgänge auf der molekularen Ebene würde bei der Entwicklung neuer Kunststoffe sehr viel Zeit und Geld sparen.


Ein Aktin-Netzwerk betrachtet durch das konfokale Rheometer

Auch die Natur macht sich die mechanischen Eigenschaften von Polymeren zu Nutze: Biologische Polymere geben Zellen ihre Stabilität und spielen eine entscheidende Rolle bei der Ausführung ihrer komplexen Funktionen. Das Physiker-Team um Professor Andreas Bausch nutzte nun das Muskelfaser-Protein Aktin, um ein Polymernetzwerk zu bilden. Die Aktin-Fasern sind unter einem Fluoreszenzmikroskop sichtbar. Damit gelang es den Wissenschaftlern, die Bewegungen der einzelnen Fasern bei mechanischer Belastung des Materials direkt zu beobachten.

Durch die gleichzeitige Verwendung eines Rheometers, mit dessen Hilfe mechanische Eigenschaften von Materialien untersucht werden können, und eines konfokalen Mikroskops konnten die Wissenschaftler das Verhalten des Aktin Netzwerks während der mechanischen Verformungen beobachten und dreidimensional filmen.

Mit ihren nun im Online-Journal Nature Communications veröffentlichten Untersuchungen konnten sie zeigen, dass ihr Modellsystem nicht nur die dem Mullins-Effekt zugrunde liegenden Vorgänge auf molekularer Ebene zeigen kann sondern auch den gegenteiligen Effekt, bei dem das Material bei wiederholter Belastung härter wird.

Verantwortlich für die Änderungen der mechanischen Eigenschaften sind umfangreiche Umorganisationen der Netzwerkstruktur, die auf diese Weise erstmals direkt beobachtet werden konnten. In Zukunft wird das Modell der Physiker dabei helfen, auch die Eigenschaftsänderungen anderer Materialien besser zu verstehen.

Die Arbeiten wurden unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (Exzellenzcluster Center for Nanosystems Initiative Munich, International Graduate School of Science and Engineering der TUM) sowie dem Bayerischen Elitenetzwerk (CompInt). Die Kooperationspartner an der Georgetown University, Washington D.C., USA, wurden unterstützt aus Mitteln der National Science Foundation und des Air Force Office of Scientific Research der USA.

Originalpublikation:
Cyclic hardening in bundled actin networks, K. M. Schmoller, P. Fernández, R. C. Arevalo, D. L. Blair und A. R. Bausch, Nature Communications, Vol. 1, 134, 7. Dezember 2010 – DOI: 10.1038/ncomms1134

http://www.nature.com/ncomms/journal/v1/n9/full/ncomms1134.html

Kontakt:
Prof. Dr. Andreas Bausch
Technische Universität München
Lehrstuhl für Zellbiophysik (E 27)
James Franck Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12480
Fax: +49 89 289 14469
E-Mail: andreas.bausch@ph.tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.bio.ph.tum.de
http://www.nature.com/ncomms/journal/v1/n9/full/ncomms1134.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik