Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle und Elektronen in schwungvollem Takt

20.10.2010
Lichtenberg-Professor Jascha Repp zeigt, dass sich beim Stromfluss durch Moleküle deren Atomkerne und Elektronen nicht unabhängig, sondern gekoppelt bewegen. Die Ergebnisse zur Molekularelektronik werden jetzt in Nature Physics veröffentlicht.

Elektronische Geräte wie Computer, Handy und Co. werden immer kleiner und effizienter. Großen Anteil an dieser Entwicklung hatte bislang die Mikroelektronik. Um technologische Grenzen der Miniaturisierung zu überwinden, erforscht man Alternativen zur herkömmlichen Halbleiterelektronik.

Eine Option ist die Molekularelektronik, bei der elektronische Schaltungen künftig direkt aus einzelnen, leitfähigen Molekülen verdrahtet werden sollen. Solche molekularen Drähte untersucht Jascha Repp in Zusammenarbeit mit Kollegen des IBM Research – Zurich. Der Experimentalphysiker hat seit 2007 eine Lichtenberg-Professur an der Universität Regensburg inne, die die VolkswagenStiftung mit rund 1,5 Millionen Euro finanziert.

Jetzt haben die Wissenschaftler in bestimmten molekularen Drähten Anzeichen für eine Kopplung der Bewegung von Atomkernen und der Bewegung von Elektronen beobachtet. Bisher ging man davon aus, dass sie sich unabhängig voneinander bewegen. Das Forscherteam um Jascha Repp konnte dagegen zeigen, dass sie gekoppelt sind und diese Kopplung deutlich in Erscheinung tritt. Diese Entdeckung veröffentlichen sie im Journal Nature Physics – zu finden als Advance Online Publication auf der Website des Fachmagazins unter http://dx.doi.org/10.1038/NPHYS1802.

Universität Regensburg
Fakultät Physik
Prof. Dr. Jascha Repp
Telefon: 0941 943 4201
E-Mail: jascha.repp@physik.uni-regensburg.de
Worin liegt nun das Potenzial dieser Entdeckung? In der Mikroelektronik werden Elektronen durch Halbleiterstrukturen geschickt, die sich zwar bereits im Nanometerbereich befinden, bezogen auf atomare Maßstäbe jedoch immer noch sehr groß sind. Hier ist die Kopplung der Elektronen an die Kernbewegung naturgemäß relativ schwach ausgeprägt. In der molekularen Elektronik dagegen fällt diese viel größer aus. Aus Sicht der konventionellen Elektronik ist dies ein Nachteil, führt es doch zu einer unerwünschten Erwärmung des Bauteils. Doch die Elektronik der Zukunft wird möglicherweise nicht aus herkömmlichen Transistor-Bauelementen aufgebaut sein, sondern auf völlig anderen Mechanismen basieren. Insofern eröffnet die beobachtete Kopplung die Möglichkeit zu gänzlich neuer Funktionalität, bei der mechanische Bewegung in Molekülen eine Rolle spielen könnte.
Hintergrund Förderinitiative Lichtenberg-Professuren
Mit den Lichtenberg-Professuren fördert die VolkswagenStiftung seit 2003 herausragende Wissenschaftlerinnen und Wissenschaftler in innovativen Lehr- und Forschungsfeldern. Für fünf bis maximal acht Jahre stellt die Stiftung Mittel für eine Stiftungsprofessur zur Verfügung. Voraussetzung ist, dass die aufnehmende Hochschule die Übernahme erfolgreich evaluierter Professuren im Anschluss an die Förderung garantiert. Details zur Förderinitiative finden Sie unter http://www.volkswagenstiftung.de/lichtenberg-professuren.
Kontakt VolkswagenStiftung
Kommunikation
Jens Rehländer
Telefon: 0511 8381 380
E-Mail: rehlaender@volkswagenstiftung.de
Förderinitiative
Dr. Anja Fließ
Telefon: 0511 8381 374
E-Mail: fliess@volkswagenstiftung.de

Jens Rehländer | idw
Weitere Informationen:
http://www.volkswagenstiftung.de
http://www.volkswagenstiftung.de/lichtenberg-professuren

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics