Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle und Elektronen in schwungvollem Takt

20.10.2010
Lichtenberg-Professor Jascha Repp zeigt, dass sich beim Stromfluss durch Moleküle deren Atomkerne und Elektronen nicht unabhängig, sondern gekoppelt bewegen. Die Ergebnisse zur Molekularelektronik werden jetzt in Nature Physics veröffentlicht.

Elektronische Geräte wie Computer, Handy und Co. werden immer kleiner und effizienter. Großen Anteil an dieser Entwicklung hatte bislang die Mikroelektronik. Um technologische Grenzen der Miniaturisierung zu überwinden, erforscht man Alternativen zur herkömmlichen Halbleiterelektronik.

Eine Option ist die Molekularelektronik, bei der elektronische Schaltungen künftig direkt aus einzelnen, leitfähigen Molekülen verdrahtet werden sollen. Solche molekularen Drähte untersucht Jascha Repp in Zusammenarbeit mit Kollegen des IBM Research – Zurich. Der Experimentalphysiker hat seit 2007 eine Lichtenberg-Professur an der Universität Regensburg inne, die die VolkswagenStiftung mit rund 1,5 Millionen Euro finanziert.

Jetzt haben die Wissenschaftler in bestimmten molekularen Drähten Anzeichen für eine Kopplung der Bewegung von Atomkernen und der Bewegung von Elektronen beobachtet. Bisher ging man davon aus, dass sie sich unabhängig voneinander bewegen. Das Forscherteam um Jascha Repp konnte dagegen zeigen, dass sie gekoppelt sind und diese Kopplung deutlich in Erscheinung tritt. Diese Entdeckung veröffentlichen sie im Journal Nature Physics – zu finden als Advance Online Publication auf der Website des Fachmagazins unter http://dx.doi.org/10.1038/NPHYS1802.

Universität Regensburg
Fakultät Physik
Prof. Dr. Jascha Repp
Telefon: 0941 943 4201
E-Mail: jascha.repp@physik.uni-regensburg.de
Worin liegt nun das Potenzial dieser Entdeckung? In der Mikroelektronik werden Elektronen durch Halbleiterstrukturen geschickt, die sich zwar bereits im Nanometerbereich befinden, bezogen auf atomare Maßstäbe jedoch immer noch sehr groß sind. Hier ist die Kopplung der Elektronen an die Kernbewegung naturgemäß relativ schwach ausgeprägt. In der molekularen Elektronik dagegen fällt diese viel größer aus. Aus Sicht der konventionellen Elektronik ist dies ein Nachteil, führt es doch zu einer unerwünschten Erwärmung des Bauteils. Doch die Elektronik der Zukunft wird möglicherweise nicht aus herkömmlichen Transistor-Bauelementen aufgebaut sein, sondern auf völlig anderen Mechanismen basieren. Insofern eröffnet die beobachtete Kopplung die Möglichkeit zu gänzlich neuer Funktionalität, bei der mechanische Bewegung in Molekülen eine Rolle spielen könnte.
Hintergrund Förderinitiative Lichtenberg-Professuren
Mit den Lichtenberg-Professuren fördert die VolkswagenStiftung seit 2003 herausragende Wissenschaftlerinnen und Wissenschaftler in innovativen Lehr- und Forschungsfeldern. Für fünf bis maximal acht Jahre stellt die Stiftung Mittel für eine Stiftungsprofessur zur Verfügung. Voraussetzung ist, dass die aufnehmende Hochschule die Übernahme erfolgreich evaluierter Professuren im Anschluss an die Förderung garantiert. Details zur Förderinitiative finden Sie unter http://www.volkswagenstiftung.de/lichtenberg-professuren.
Kontakt VolkswagenStiftung
Kommunikation
Jens Rehländer
Telefon: 0511 8381 380
E-Mail: rehlaender@volkswagenstiftung.de
Förderinitiative
Dr. Anja Fließ
Telefon: 0511 8381 374
E-Mail: fliess@volkswagenstiftung.de

Jens Rehländer | idw
Weitere Informationen:
http://www.volkswagenstiftung.de
http://www.volkswagenstiftung.de/lichtenberg-professuren

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Breitbandlichtquellen mit flüssigem Kern
25.07.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Schreiben mit dem Elektronenstrahl: Jetzt auch Nanostrukturen aus Silber
24.07.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungsnachrichten

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie