Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Millimetergroßes „Riesenatom“ erzeugt

18.06.2010
Darmstädter Forscher beteiligt an wegweisendem Physik-Experiment

Die seltsamen Gesetze der Quantenphysik, etwa dass sich Materie ähnlich wie eine Lichtwelle verhält, gelten im unsichtbaren Mikrokosmos der Atome und Moleküle. Dass ein Quantensystem aber auch Millimetergröße erreichen kann, bewies ein Physiker-Konsortium in einem wegweisenden Experiment am Fallturm Bremen. Ähnliche Experimente mit frei fallenden Quantensystemen könnten Einsteins Relativitätstheorie testen oder zu superpräzisen Sensoren führen. Der Theoretische Physiker Reinhold Walser von der TU Darmstadt war maßgeblich an Simulationen des Experiments beteiligt.

Es ist immer wieder beeindruckend, wenn der Applaus Tausender Konzertbesucher sich von einem chaotischen Geräuschbrei in ein rhythmisches Kollektivklatschen verwandelt. Ähnliches passiert, wenn Physiker aus einigen Millionen Atomen ein so genanntes Bose-Einstein-Kondensat herstellen. Um einen solchen Phasenübergang hervorzurufen, kühlen Forscher eine Atomwolke fast bis auf den absoluten Temperaturnullpunkt (273 °C) ab. Laut Quantenphysik stellt jedes Atom eine Materiewelle dar. Bei sinkender Temperatur dehnen sich diese Materiewellen immer weiter aus, bis sie sich schließlich gegenseitig überlagern. Ähnlich wie Ozeanwellen, die sich gegenseitig zu einer Riesenwelle verstärken, wird dann aus den Millionen einzelner Materiewellen eine einzige große Materiewelle, das Bose-Einstein-Kondensat, kurz BEC. Da das BEC den Gesetzen der Quantenphysik folgt, wird es oft „Riesenatom“ genannt.

Albert Einstein und der indische Physiker Satyendranath Bose sagten die Existenz von BECs schon 1924 voraus, im Labor hergestellt werden sie seit 1995. Ein wichtiger weiterer Schritt, nämlich die Herstellung eines BEC in der Schwerelosigkeit, an die Physiker große Hoffnungen knüpfen, ist nun einem Physiker-Team um Ernst Rasel von der Universität Hannover gelungen. Die Physiker, deren Projekt den Namen „Quantus“ trägt, berichten darüber im Forschungsmagazin Science (Vol. 328, S. 1540-1543). Mit Unterstützung der Deutschen Zentrums für Luft- und Raumfahrt (DLR) bauten sie die gesamte Apparatur für die Erzeugung und den Nachweis des BEC, die normalerweise ein ganzes Labor füllt, in eine mannsgroße Metallkapsel ein und ließen diese 120 Meter tief vom Fallturm Bremen fallen. Während des fast fünf Sekunden langen freien Falls herrschte in der Kapsel Schwerelosigkeit. Die ersten Sekunden werden für die BEC-Herstellung benötigt. Danach wurde das Kondensat aus dem Magnetfeld, das es festhielt, entlassen und dehnte sich während der verbleibenden Sekunde bis zum gedämpften Aufprall in der Schwerelosigkeit auf einen Millimeter Größe aus, wie die Forscher mithilfe einer CCD-Kamera in der Kapsel nachwiesen. Im Labor kann ein freigelassenes BEC nicht zu einer solchen Größe anwachsen, da es in der Regel nur eine wenige Millimeter lange Fallstrecke hat.

„Unser Bose-Einstein-Kondensat ist das größte bislang erzeugte“, sagt der Theoretische Physiker Prof. Dr. Reinhold Walser vom Institut für Angewandte Physik der TU Darmstadt. Er erstellte ein Computermodell des frei fallenden BECs, das dessen Wachsen in der Schwerelosigkeit simulierte. Der Erfolg des Teams beweise, dass es möglich ist, BECs zuverlässig auch im Weltraum herzustellen, schreiben Paulo Nussenzveig und João C. A. Barata von der Universität Sao Paulo in einem Kommentar in Science. Im All könnten die Riesenatome sehr nützlich sein. „Aus BECs lassen sich Sensoren für die Lage oder Drehungen von Satelliten bauen, die deutlich präziser sind als heutige Sensoren“, sagt Walser. Denn Materiewellen zweier BECs überlagern sich, ähnlich Laserstrahlen, zu einem Interferenzmuster, das sehr empfindlich auf Lageänderungen oder Drehungen reagiert.

Je größer ein BEC, desto präzisere Sensoren lassen sich bauen. Ihre Genauigkeit könnte beispielsweise für Tests der Allgemeinen Relativitätstheorie Einsteins nötig sein. Schwerelose BECs im Weltraum könnten außerdem dazu beitragen, eine grundlegende Frage der Physik zu beantworten. Bislang gibt es nämlich für das ganz Große, Planeten und Sterne, sowie das ganz Kleine, Moleküle, Atome und Elementarteilchen, zwei voneinander getrennte Theorien, nämlich die Allgemeine Relativitätstheorie und die Quantenphysik. Ein frei fallendes makroskopisches Quantensystem ist etwas, was die beiden Welten verbindet und daher zu einer einheitlichen Theorie beitragen könnte.

„Unser Ziel ist es, BECs im Weltraum zu erzeugen, am liebsten auf der ISS“, sagt Walser. Bis dahin gibt es noch Zwischenetappen. Zunächst soll das BEC in einem zehn Sekunden währenden Katapultexperiment im Fallturm Bremen untersucht werden. Danach soll das Experiment in eine Rakete eingebaut werden, in der bei einem Parabelflug mehrere Minuten lange Schwerelosigkeit herrschen soll. „So wollen wir die Frage klären, wie groß ein BEC werden kann, den Entstehungsprozess klären und die Anwendung als ultrapräzise Beschleunigungs- und Rotationssensor vorantreiben“, erläutert Walser.

Das Projekt QUANTUS ist ein Zusammenschluss deutscher und europäischer Forschungseinrichtungen, darunter die Leibniz Universität Hannover, die Universität Ulm, die Humboldt-Universität zu Berlin, die Universität Hamburg, das Max-Planck-Institut für Quantenoptik, die Technische Universität Darmstadt, die Ecole Normale Superieure de Paris, das Midlands Ultracold Atom Research Center in Birmingham, das DLR Zentrum für Raumfahrtsysteme und das Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen. Finanziert wurde es durch die Deutsche Agentur für Luft- und Raumfahrt (DLR) mit Mitteln des Ministeriums für Wirtschaft und Technologie und durch den Exzellenzcluster QUEST (Centre for Quantum Engineering and Space-Time Research) an der Leibniz Universität Hannover.

Kontakt für Journalisten:
Prof. Dr. Reinhold Walser
Theoretische Quantendynamik
Institut für Angewandte Physik
Tel.:06151 16-5200
E-Mail: reinhold.walser@physik.tu-darmstadt.de
MI-Nr. 34/2010, mei

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau