Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Millimetergroßes „Riesenatom“ erzeugt

18.06.2010
Darmstädter Forscher beteiligt an wegweisendem Physik-Experiment

Die seltsamen Gesetze der Quantenphysik, etwa dass sich Materie ähnlich wie eine Lichtwelle verhält, gelten im unsichtbaren Mikrokosmos der Atome und Moleküle. Dass ein Quantensystem aber auch Millimetergröße erreichen kann, bewies ein Physiker-Konsortium in einem wegweisenden Experiment am Fallturm Bremen. Ähnliche Experimente mit frei fallenden Quantensystemen könnten Einsteins Relativitätstheorie testen oder zu superpräzisen Sensoren führen. Der Theoretische Physiker Reinhold Walser von der TU Darmstadt war maßgeblich an Simulationen des Experiments beteiligt.

Es ist immer wieder beeindruckend, wenn der Applaus Tausender Konzertbesucher sich von einem chaotischen Geräuschbrei in ein rhythmisches Kollektivklatschen verwandelt. Ähnliches passiert, wenn Physiker aus einigen Millionen Atomen ein so genanntes Bose-Einstein-Kondensat herstellen. Um einen solchen Phasenübergang hervorzurufen, kühlen Forscher eine Atomwolke fast bis auf den absoluten Temperaturnullpunkt (273 °C) ab. Laut Quantenphysik stellt jedes Atom eine Materiewelle dar. Bei sinkender Temperatur dehnen sich diese Materiewellen immer weiter aus, bis sie sich schließlich gegenseitig überlagern. Ähnlich wie Ozeanwellen, die sich gegenseitig zu einer Riesenwelle verstärken, wird dann aus den Millionen einzelner Materiewellen eine einzige große Materiewelle, das Bose-Einstein-Kondensat, kurz BEC. Da das BEC den Gesetzen der Quantenphysik folgt, wird es oft „Riesenatom“ genannt.

Albert Einstein und der indische Physiker Satyendranath Bose sagten die Existenz von BECs schon 1924 voraus, im Labor hergestellt werden sie seit 1995. Ein wichtiger weiterer Schritt, nämlich die Herstellung eines BEC in der Schwerelosigkeit, an die Physiker große Hoffnungen knüpfen, ist nun einem Physiker-Team um Ernst Rasel von der Universität Hannover gelungen. Die Physiker, deren Projekt den Namen „Quantus“ trägt, berichten darüber im Forschungsmagazin Science (Vol. 328, S. 1540-1543). Mit Unterstützung der Deutschen Zentrums für Luft- und Raumfahrt (DLR) bauten sie die gesamte Apparatur für die Erzeugung und den Nachweis des BEC, die normalerweise ein ganzes Labor füllt, in eine mannsgroße Metallkapsel ein und ließen diese 120 Meter tief vom Fallturm Bremen fallen. Während des fast fünf Sekunden langen freien Falls herrschte in der Kapsel Schwerelosigkeit. Die ersten Sekunden werden für die BEC-Herstellung benötigt. Danach wurde das Kondensat aus dem Magnetfeld, das es festhielt, entlassen und dehnte sich während der verbleibenden Sekunde bis zum gedämpften Aufprall in der Schwerelosigkeit auf einen Millimeter Größe aus, wie die Forscher mithilfe einer CCD-Kamera in der Kapsel nachwiesen. Im Labor kann ein freigelassenes BEC nicht zu einer solchen Größe anwachsen, da es in der Regel nur eine wenige Millimeter lange Fallstrecke hat.

„Unser Bose-Einstein-Kondensat ist das größte bislang erzeugte“, sagt der Theoretische Physiker Prof. Dr. Reinhold Walser vom Institut für Angewandte Physik der TU Darmstadt. Er erstellte ein Computermodell des frei fallenden BECs, das dessen Wachsen in der Schwerelosigkeit simulierte. Der Erfolg des Teams beweise, dass es möglich ist, BECs zuverlässig auch im Weltraum herzustellen, schreiben Paulo Nussenzveig und João C. A. Barata von der Universität Sao Paulo in einem Kommentar in Science. Im All könnten die Riesenatome sehr nützlich sein. „Aus BECs lassen sich Sensoren für die Lage oder Drehungen von Satelliten bauen, die deutlich präziser sind als heutige Sensoren“, sagt Walser. Denn Materiewellen zweier BECs überlagern sich, ähnlich Laserstrahlen, zu einem Interferenzmuster, das sehr empfindlich auf Lageänderungen oder Drehungen reagiert.

Je größer ein BEC, desto präzisere Sensoren lassen sich bauen. Ihre Genauigkeit könnte beispielsweise für Tests der Allgemeinen Relativitätstheorie Einsteins nötig sein. Schwerelose BECs im Weltraum könnten außerdem dazu beitragen, eine grundlegende Frage der Physik zu beantworten. Bislang gibt es nämlich für das ganz Große, Planeten und Sterne, sowie das ganz Kleine, Moleküle, Atome und Elementarteilchen, zwei voneinander getrennte Theorien, nämlich die Allgemeine Relativitätstheorie und die Quantenphysik. Ein frei fallendes makroskopisches Quantensystem ist etwas, was die beiden Welten verbindet und daher zu einer einheitlichen Theorie beitragen könnte.

„Unser Ziel ist es, BECs im Weltraum zu erzeugen, am liebsten auf der ISS“, sagt Walser. Bis dahin gibt es noch Zwischenetappen. Zunächst soll das BEC in einem zehn Sekunden währenden Katapultexperiment im Fallturm Bremen untersucht werden. Danach soll das Experiment in eine Rakete eingebaut werden, in der bei einem Parabelflug mehrere Minuten lange Schwerelosigkeit herrschen soll. „So wollen wir die Frage klären, wie groß ein BEC werden kann, den Entstehungsprozess klären und die Anwendung als ultrapräzise Beschleunigungs- und Rotationssensor vorantreiben“, erläutert Walser.

Das Projekt QUANTUS ist ein Zusammenschluss deutscher und europäischer Forschungseinrichtungen, darunter die Leibniz Universität Hannover, die Universität Ulm, die Humboldt-Universität zu Berlin, die Universität Hamburg, das Max-Planck-Institut für Quantenoptik, die Technische Universität Darmstadt, die Ecole Normale Superieure de Paris, das Midlands Ultracold Atom Research Center in Birmingham, das DLR Zentrum für Raumfahrtsysteme und das Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen. Finanziert wurde es durch die Deutsche Agentur für Luft- und Raumfahrt (DLR) mit Mitteln des Ministeriums für Wirtschaft und Technologie und durch den Exzellenzcluster QUEST (Centre for Quantum Engineering and Space-Time Research) an der Leibniz Universität Hannover.

Kontakt für Journalisten:
Prof. Dr. Reinhold Walser
Theoretische Quantendynamik
Institut für Angewandte Physik
Tel.:06151 16-5200
E-Mail: reinhold.walser@physik.tu-darmstadt.de
MI-Nr. 34/2010, mei

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics