Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrowellen geben Ionen den Takt vor: Quanteninformationsverarbeitung in Ionen stabilisiert

11.08.2011
Physiker der Universitäten Ulm und Siegen haben eine Möglichkeit gefunden, Quantenzustände von Ionen durch Mikrowellenstrahlung zu stabilisieren.

Ein wichtiger Beitrag. Schließlich gehört die „Zähmung“ von Atomen und Ionen, etwa für die Quanteninformationsverarbeitung, zu den aktuellen Herausforderungen der Physik. Die neuen Erkenntnisse könnten beispielsweise ein Baustein auf dem Weg zum leistungsfähigen Quantencomputer sein.

Unter dem Titel „Quantum Gates and Memory using Microwave Dressed States“ haben die Forscher um Professor Martin Plenio und Dr. Alex Retzker vom Ulmer Institut für Theoretische Physik sowie Professor Christof Wunderlich von der Universität Siegen ihre Ergebnisse jetzt in der renommierten Fachzeitschrift „Nature“ publiziert.

„Um Ionen unter Kontrolle zu bringen, werden sie in Ionenfallen gefangen und mit Laserlicht gekühlt. Dann stellt sich die Frage, wie man die elektrisch geladenen Partikel miteinander in Wechselwirkung bringt“, erklärt Humboldt-Professor Martin Plenio. Bereits vor zehn Jahren habe der Mitautor der jüngsten Publikation, Professor Christof Wunderlich (Universität Siegen), vorgeschlagen, Ionen zusätzlich einem starken Magnetfeld auszusetzen. In diesem Fall bestimmt die Ausrichtung der im Ion befindlichen Elektronen die Gesamtenergie des Partikels. Eine Änderung dieser Ausrichtung verschiebt das ganze Ion in der Falle. Das benachbarte Ion registriert die Verschiebung und ändert seine Position dementsprechend. Die Verschiebung kann dann auf Elektronen dieses Teilchens übertragen werden. „Derartige angestrebte Wechselwirkungen können mit einer Stuhlreihe verglichen werden. Rückt die äußerste Person einen Platz weiter, stößt diese Bewegung eine Kettenreaktion an“, so Plenio.

Das Problem: Die zusätzlichen Magnetfelder sind nicht stabil und ändern ihre Stärke zufällig. Deshalb geraten die Ionen nach und nach außer Kontrolle, in der Physik nennt man dieses Phänomen „Rauschen“. Um ein solches Chaos zu vermeiden, müsste ein „Dirigent“ den Ionen den Takt vorgeben. Diese Rolle haben die Wissenschaftler zusätzlichen Mikrowellen und somit oszillierenden elektromagnetischen Feldern zugewiesen, die in Ionenfallen integriert werden können. Mit Erfolg: Durch starke elektromagnetische Felder werden Zufälligkeiten in den Elektronen-Ionen-Wechselwirkungen unterdrückt.

Künftig wollen die Wissenschaftler ihre Erkenntnisse auf weitere physikalische Fragestellungen anwenden und durch die „Mikrowellenkontrolle“ zum Beispiel Mess-Sensoren verbessern. Eine Besonderheit des Forschungsprojekts ist die enge Zusammenarbeit von Ulmer Theoretikern und Experimentalphysikern aus Siegen – und zwar von der ersten Idee vor rund einem Jahr bis zur Publikation des Fachbeitrags.

Die Wissenschaftler sind vom Bundesministerium für Bildung und Forschung (BMBF) und von der Deutschen Forschungsgemeinschaft (DFG) unterstützt worden. Zudem wurde das Projekt mit Mitteln aus dem EU-Projekt „The Physics of Ion Coulomb Chrystals“ (PICC) und der Alexander von Humboldt Professur, die Professor Martin Plenio an der Uni Ulm Ulm innehat, finanziert.

Weitere Informationen: Prof. Dr. Martin Plenio: 0731/50-22900

N. Timoney, I. Baumgart, M. Johanning, A.F. Varón, M.B. Plenio, A. Retzker, C. Wunderlich: „Quantum Gates and Memory using Microwave Dressed States“.

Nature. Vol. 476, Nr. 7359. pp. 185-188. DOI: 10.1038/nature10319 (11. August 2011).

Willi Baur | idw
Weitere Informationen:
http://www.uni-ulm.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics