Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrowellen geben Ionen den Takt vor: Quanteninformationsverarbeitung in Ionen stabilisiert

11.08.2011
Physiker der Universitäten Ulm und Siegen haben eine Möglichkeit gefunden, Quantenzustände von Ionen durch Mikrowellenstrahlung zu stabilisieren.

Ein wichtiger Beitrag. Schließlich gehört die „Zähmung“ von Atomen und Ionen, etwa für die Quanteninformationsverarbeitung, zu den aktuellen Herausforderungen der Physik. Die neuen Erkenntnisse könnten beispielsweise ein Baustein auf dem Weg zum leistungsfähigen Quantencomputer sein.

Unter dem Titel „Quantum Gates and Memory using Microwave Dressed States“ haben die Forscher um Professor Martin Plenio und Dr. Alex Retzker vom Ulmer Institut für Theoretische Physik sowie Professor Christof Wunderlich von der Universität Siegen ihre Ergebnisse jetzt in der renommierten Fachzeitschrift „Nature“ publiziert.

„Um Ionen unter Kontrolle zu bringen, werden sie in Ionenfallen gefangen und mit Laserlicht gekühlt. Dann stellt sich die Frage, wie man die elektrisch geladenen Partikel miteinander in Wechselwirkung bringt“, erklärt Humboldt-Professor Martin Plenio. Bereits vor zehn Jahren habe der Mitautor der jüngsten Publikation, Professor Christof Wunderlich (Universität Siegen), vorgeschlagen, Ionen zusätzlich einem starken Magnetfeld auszusetzen. In diesem Fall bestimmt die Ausrichtung der im Ion befindlichen Elektronen die Gesamtenergie des Partikels. Eine Änderung dieser Ausrichtung verschiebt das ganze Ion in der Falle. Das benachbarte Ion registriert die Verschiebung und ändert seine Position dementsprechend. Die Verschiebung kann dann auf Elektronen dieses Teilchens übertragen werden. „Derartige angestrebte Wechselwirkungen können mit einer Stuhlreihe verglichen werden. Rückt die äußerste Person einen Platz weiter, stößt diese Bewegung eine Kettenreaktion an“, so Plenio.

Das Problem: Die zusätzlichen Magnetfelder sind nicht stabil und ändern ihre Stärke zufällig. Deshalb geraten die Ionen nach und nach außer Kontrolle, in der Physik nennt man dieses Phänomen „Rauschen“. Um ein solches Chaos zu vermeiden, müsste ein „Dirigent“ den Ionen den Takt vorgeben. Diese Rolle haben die Wissenschaftler zusätzlichen Mikrowellen und somit oszillierenden elektromagnetischen Feldern zugewiesen, die in Ionenfallen integriert werden können. Mit Erfolg: Durch starke elektromagnetische Felder werden Zufälligkeiten in den Elektronen-Ionen-Wechselwirkungen unterdrückt.

Künftig wollen die Wissenschaftler ihre Erkenntnisse auf weitere physikalische Fragestellungen anwenden und durch die „Mikrowellenkontrolle“ zum Beispiel Mess-Sensoren verbessern. Eine Besonderheit des Forschungsprojekts ist die enge Zusammenarbeit von Ulmer Theoretikern und Experimentalphysikern aus Siegen – und zwar von der ersten Idee vor rund einem Jahr bis zur Publikation des Fachbeitrags.

Die Wissenschaftler sind vom Bundesministerium für Bildung und Forschung (BMBF) und von der Deutschen Forschungsgemeinschaft (DFG) unterstützt worden. Zudem wurde das Projekt mit Mitteln aus dem EU-Projekt „The Physics of Ion Coulomb Chrystals“ (PICC) und der Alexander von Humboldt Professur, die Professor Martin Plenio an der Uni Ulm Ulm innehat, finanziert.

Weitere Informationen: Prof. Dr. Martin Plenio: 0731/50-22900

N. Timoney, I. Baumgart, M. Johanning, A.F. Varón, M.B. Plenio, A. Retzker, C. Wunderlich: „Quantum Gates and Memory using Microwave Dressed States“.

Nature. Vol. 476, Nr. 7359. pp. 185-188. DOI: 10.1038/nature10319 (11. August 2011).

Willi Baur | idw
Weitere Informationen:
http://www.uni-ulm.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie