Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Matrix-Theorie als Alternative zur Stringtheorie?

09.09.2014

Physiker der Universität Wien erforschen Ursprung der Elementarteilchen

Auch nach der spektakulären Entdeckung des Higgs-Teilchens 2012 am CERN bleibt die Suche nach einer umfassenden Theorie der fundamentalen Wechselwirkungen eines der grossen ungelösten Probleme in der theoretischen Physik. Besondere Schwierigkeiten bereitet die Zusammenführung von Quantenmechanik und Gravitation.


Die Physiker Harold Steinacker und Jochen Zahn haben eine mögliche Alternative zur Stringtheorie entdeckt.

Copyright: Universität Wien

Physiker um Harold Steinacker von der Universität Wien untersuchen mit sogenannten Matrix-Modellen einen alternativen Zugang zur favorisierten Stringtheorie. Dazu publizierten sie kürzlich im Fachjournal "Progress of Theoretical and Experimental Physics".

Die Stringtheorie liefert für die Verbindung von Quantenmechanik und Gravitation einen weitreichenden Ansatz, führt aber in ihrer konventionellen Formulierung zu einer unüberschaubaren Vielfalt von Möglichkeiten. Dadurch ist die Vorhersagekraft der Theorie stark eingeschränkt. Hier setzt das vom FWF geförderte Projekt von Harold Steinacker, theoretischer Physiker an der Universität Wien, an.

"Die von uns genutzten, so genannten Matrix-Modelle sind bemerkenswert einfach. Dabei sind alle physikalischen Objekte und deren Dynamik in wenigen Matrizen codiert und beschrieben, insbesondere auch die Raumzeit und deren Geometrie", so Steinacker: "Die Modelle ermöglichen es, tiefliegende Fragen, z.B. über die Quantenstruktur der Raumzeit oder die Zahl der Dimensionen unserer Raumzeit zu untersuchen".

Die Tragweite dieses Zugangs ist allerdings umstritten: Insbesondere war bisher nicht klar, ob damit eine realistische Beschreibung der Elementarteilchen und ihrer Wechselwirkungen überhaupt möglich ist. Knackpunkt hierbei ist eine essentielle Eigenschaft des Standard-Modells der Elementarteilchen, die sogenannte Chiralität. Es war nicht klar, ob und wie diese Eigenschaft in Matrix-Modellen realisiert werden kann.

Chiralität als Schlüsseleigenschaft
In der nun veröffentlichten Arbeit konnten Harold Steinacker und Jochen Zahn zeigen, dass auch die chiralen Eigenschaften des Standard-Modells im Rahmen der Matrix-Modelle zu realisieren sind. Sie fanden erstmals eine Konfiguration im Matrix-Modell, die dem Standard-Modell der Elementarteilchen zumindest in wesentlichen Zügen nahekommt. Der Ansatz führt zu einer Erweiterung insbesondere des Higgs-Sektors des Standard-Modells, dem eine geometrische Rolle zugewiesen wird, wenn auch in einer derzeit noch spekulativen Form.

Quanten-Geometrie
Grundlage hierfür sind neue mathematische Techniken der Quanten-Geometrie, welche in den vergangenen Jahren insbesondere an der Universität Wien entwickelt und adaptiert wurden. Die physikalischen Eigenschaften der Modelle können durch solche Quanten-Geometrien in zusätzlichen Dimensionen beschrieben und verstanden werden. "Der Zugang über Matrix-Modelle ermöglicht es dabei, Ideen der Stringtheorie aufzugreifen, die damit zusammenhängenden Probleme aber zu umgehen", erklärt Steinacker.

Diese Entwicklungen eröffnen einen bemerkenswert einfachen Zugang auf der Suche nach einer einheitlichen Theorie der fundamentalen Wechselwirkungen, in dem die Quantenphysik auch die Struktur der Raumzeit bestimmt. Bis zu einem hinreichenden Verständnis dieser Matrix-Modelle und deren Tragfähigkeit als fundamentale Theorie sei es jedoch noch ein langer unerforschter Weg, so der Physiker abschließend.

Publikation:
An extended standard model and its Higgs geometry from the matrix model: Harold C. Steinacker, Jochen Zahn. In: Progress of Theoretical and Experimental Physics 2014;
Doi: 10.1093/ptep/ptu111

Wissenschaftlicher Kontakt
Priv.-Doz. Dr. Harold C. Steinacker
Mathematische Physik
Fakultät für Physik,
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-4277-515 26
harold.steinacker@univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. www.univie.ac.at

Alexandra Frey | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften