Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mainzer Physiker analysieren Entstehung von Defekten bei Phasenübergängen an Ionenkristallen

07.08.2013
Forschungsergebnisse sind relevant für ein Modell zur Entstehung von Strukturen der Materie wenige Sekundenbruchteile nach dem Urknall

Forschergruppen der Johannes Gutenberg-Universität Mainz (JGU) und der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig ist es in Kollaboration mit Wissenschaftlern der Universität Ulm und der Hebräischen Universität Jerusalem gelungen, die Entstehung von Defekten bei Phasenübergängen zweiter Ordnung in Ionenkristallen zu untersuchen.


Schematische Darstellung der verwendeten Ionenfalle. Die Ionen werden durch elektrische Felder zwischen den vergoldeten Elektroden festgehalten. Der Ionenkristall mit Defekt ist stark vergrößert dargestellt.
Abb./©: QUANTUM, JGU

Hierbei werden eindimensionale lineare Ketten von Ionen mit hoher Geschwindigkeit wie bei einer Ziehharmonika in eine zweidimensionale Zickzackstruktur gepresst. Bei diesem Übergang kann es zur Bildung von Defekten in der Kristallstruktur kommen.

Die Wahrscheinlichkeit der Bildung solcher Defekte hängt von der Geschwindigkeit ab, mit der der Phasenübergang durchlaufen wird. Der der Entstehung dieser Defekte zugrunde liegende Kibble-Zurek-Mechanismus ist ein universelles physikalisches Gesetz und spielt auch in vielen anderen Systemen eine wichtige Rolle.

Auf ihm beruht unter anderem eine Theorie, durch die die Entstehung von Materie 10[HOCH][MINUS]30 Sekunden nach dem Urknall erklärt werden kann. Bei den Experimenten in Mainz wurde dieser Effekt mit einer bisher einmaligen Genauigkeit untersucht und analysiert.

Das Mainzer Forscherteam der Arbeitsgruppe Quanten-, Atom- und Neutronenphysik (QUANTUM) am Institut für Physik der JGU hat 16 Ionen in einer Paul-Falle gefangen. Dort werden Ionen durch elektrische Felder auf sehr kleinem Raum festgehalten und ordnen sich wie Perlen auf einer Ketten an. Nun wird die Länge, auf der die Ionen gefangen sind, drastisch reduziert. Dadurch wird die Ionenkette zusammengedrückt und faltet sich in eine Zickzackstruktur.

Die Ionen können sich allerdings entweder in einem Zickzackmuster oder dem spiegelverkehrten Zackzickmuster anordnen. Nimmt die eine Hälfte der Ionenkette eine andere Struktur an als die andere Hälfte, treffen die zueinander spiegelverkehrten Muster in der Mitte zusammen. Da sich die beiden Muster nicht ohne Fehler verbinden lassen, liegt an dieser Stelle folglich ein Defekt in der Struktur des Kristalls vor.

Aufgrund der Form des Fallenpotentials wird der Phasenübergang als erstes in der Mitte der Ionenkette erreicht und breitet sich von hier zu den Enden des Kristalls hin aus. Ist diese Ausbreitung nun schneller als die Informationsgeschwindigkeit zwischen zwei benachbarten Ionen, so kann sich ein Ion nicht an der Struktur seiner Nachbarn orientieren und nimmt eine zufällige Anordnung ein. Daher hängt die Wahrscheinlichkeit zur Entstehung solcher Defekte stark von der Geschwindigkeit ab, mit der der Phasenübergang durchschritten wird.

In Ionenfallen kann diese Geschwindigkeit mit hoher Präzision kontrolliert und variiert werden, was den Forschern aus Mainz und Braunschweig ermöglicht hat, die Häufigkeit von Defekten in Abhängigkeit der Geschwindigkeit des Phasenüberganges zu messen. Das experimentelle Ergebnis bestätigt theoretische Vermutungen des Kibble-Zurek-Mechanismus auf zwei Prozent Genauigkeit.

Veröffentlichungen:
S. Ulm, J. Roßnagel, G. Jacob, C. Degünther, S.T. Dawkins, U.G. Poschinger, R. Nigmatullin, A. Retzker,
M.B. Plenio, F. Schmidt-Kaler, K. Singer
Observation of the Kibble–Zurek scaling law for defect formation in ion crystals
Nature Communications 4, 2290 (2013)
http://www.nature.com/ncomms/2013/130807/ncomms3290/full/ncomms3290.html
[arXiv:1302.5343]
K. Pyka, J. Keller, H. L. Partner, R. Nigmatullin, T. Burgermeister, D.-M. Meier, K. Kuhlmann, A. Retzker, M.B. Plenio, W.H. Zurek, A. del Campo, T.E. Mehlstäubler
Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals
Nature Communications 4, 2291 (2013)
http://www.nature.com/ncomms/2013/130807/ncomms3291/full/ncomms3291.html
[arXiv:1211.7005]
Abbildung:
www.uni-mainz.de/bilder_presse/08_physik_kibble-zurek-mechanismus.jpg
Schematische Darstellung der verwendeten Ionenfalle. Die Ionen werden durch elektrische Felder zwischen den vergoldeten Elektroden festgehalten. Der Ionenkristall mit Defekt ist stark vergrößert dargestellt.

Abb./©: QUANTUM, JGU

Weiterführende Links:

http://www.quantenbit.de
– Arbeitsgruppe "Kalte Ionen und Experimentelle Quanteninformation"
http://www.quantum.physik.uni-mainz.de
– Arbeitsgruppe QUANTUM
http://www.quantummetrology.de
– Centre for Quantum Engineering and Space-Time Research
Weitere Informationen:
Dipl.-Phys. Stefan Ulm
Arbeitsgruppe "Quanten-, Atom- und Neutronenphysik" (QUANTUM)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-23671
Fax +49 6131 39-25179
E-Mail: ulmst@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.quantenbit.de/
http://www.uni-mainz.de/presse/57223.php

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie