Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetfelder treiben die Sonnenwinde an

25.11.2009
Satellitenmessung löst Rätsel der Plasmaphysik

Starke Magnetfelder dürften den Schlüssel für das Rätsel liefern, wie Sonnenwinde angetrieben werden. Zu diesem Schluss kommen Raumforscher am University College London in der Zeitschrift "Astrophysical Journal".

Sie werteten die Daten aus, die 2007 durch einen Spektrometer zur Erfassung extrem kurzwelliger ultravioletter Strahlung auf dem japanischen Satelliten "Hinode" erhoben worden waren und konnten dabei zeigen, dass die hohe Geschwindigkeit der Winde auf das Auflösen magnetischer Spannungen zurückgeht.

Beschleunigung auf Millionen Stundenkilometer

Als "Sonnenwind" bezeichnet man Ansammlungen von Protonen, Elektronen und Alphateilchen, die in Geschwindigkeiten von mehreren Mio. Stundenkilometern aus der Sonne ausgestoßen werden und somit deren Masse reduzieren. "Er ist ein Fluss, der durch heißes Gas und ein Magnetfeld zustande kommt, das auch die Erde und andere Planeten einhüllt", erklärt Studienleiter Deb Baker. Bisher habe man gewusst, dass Veränderungen in diesem Wind erhebliche Störungen in Erdnähe und in der oberen Atmosphäre verursachen können, ohne dass jedoch Klarheit über die Antriebsquelle bestand.

Die aktuellen Daten sprechen dafür, dass dieser Antrieb aus freigesetzter Energie stammt, die zuvor im Magnetfeld der Sonne gespeichert war. "Am stärksten geschieht diese Freisetzung von magnetischer Energie in den hellsten aktiven Bereichen der Sonnenoberfläche, den Sonnenflecken, die eine starke Konzentration des Magnetfelds darstellen", so Baker. Der zugrundeliegenden Prozess sei eine spezielle Art der sogenannten Feldlinienverschmelzung ("slipping reconnection"). Die Forscher vermuten, dass dieser Prozess nicht nur in der Korona, sondern auch an allen anderen Regionen in verschiedenem Ausmaß stattfindet.

Hohe Bedeutung für Plasmaphysik

"Bei der Feldlinienverschmelzung wird Energie aus dem Magnetfeld in Teilchenenergie freisetzt. Dazu kommt es, wenn ein Magnetfeld ausgedehnt wird und Feldlinien mit entgegengesetzter Polarität einander überlagern", erklärt Wolfgang Baumjohann, Direktor des Institut für Weltraumforschung der Österreichischen Akademie der Wissenschaften http://www.iwf.oeaw.ac.at , im pressetext-Interview. Diese Startbeschleunigung von Sonnenwinden geschehe in Form der Massenauswürfe in der Sonnenkorona.

Dass Sonnenwinde auf diese Weise angetrieben werden, vermutet die Wissenschaft schon länger. "Allein der Beweis dafür konnte bisher nicht erstellt werden, da man sich nicht in die Sonne selbst begeben kann. Nun ist dies auf andere Weise gelungen", so Baumjohann. Vorteilhaft sei die Erkenntnis, die einen der wichtigsten Prozesse der Plasmaphysik beschreibe, um das Geschehen in anderen Sternen und anderen Galaxien besser zu verstehen. "Die Sonne steht uns sehr nahe und lässt sich daher viel besser erforschen."

Abstract des Originalartikels unter http://www.iop.org/EJ/abstract/0004-637X/705/1/926/

Johannes Pernsteiner | pressetext.austria
Weitere Informationen:
http://www.ucl.ac.uk

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
22.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics