Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetfeld und Laser entlocken Graphen ein Geheimnis

25.11.2014

Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) haben erstmals die Dynamik von Elektronen des „Wunderstoffs“ Graphen im Magnetfeld untersucht. Dabei haben sie ein scheinbar paradoxes Phänomen im Material entdeckt, das in Zukunft den Bau von neuartigen Lasern ermöglichen könnte. Zusammen mit Forschern aus Berlin, Frankreich, Tschechien und den USA beschrieben sie ihre Beobachtungen präzise im Modell und veröffentlichten sie jetzt in der Fachzeitschrift Nature Physics (DOI: 10.1038/NPHYS3164).

Graphen gilt als „Wundermaterial“: Es ist reißfester als Stahl und leitet Strom und Wärme besser als Kupfer. Als zweidimensionale Schicht, die nur aus einer Lage an Kohlenstoff-Atomen besteht, ist es aber zugleich auch flexibel, fast durchsichtig und rund eine Million Mal dünner als ein Blatt Papier.


Obwohl HZDR-Physiker die Elektronen im Graphen mit Terahertz-Strahlung (gelbe Spiralpfeile) auf ein bestimmtes Ernergieniveau (LL0) anregen, kommt es zur Umverteilung auf die Niveaus LL-1 und LL1

HZDR/Voigt


Mit den intensiven Lichtblitzen der Freie-Elektronen-Laser am HZDR können Materialzustände auf atomarer Ebene untersucht werden.

HZDR/Frank Bierstedt

Schon kurz nach seiner Entdeckung vor zehn Jahren erkannten Wissenschaftler zudem, dass sich die Energiezustände von Graphen im Magnetfeld – die sogenannten Landau-Niveaus – anders verhalten als die von Halbleitern. „Es wurden zwar viele faszinierende Effekte von Graphen in Magnetfeldern entdeckt, aber die Dynamik von Elektronen hat bislang niemand in einem solchen System untersucht“, erklärt der Physiker Dr. Stephan Winnerl vom HZDR.

Die HZDR-Forscher setzten das Graphen einem vier Tesla starken Magnetfeld aus – 40 Mal stärker als ein Hufeisenmagnet. Das genügt, um Elektronen im Graphen dazu zu bringen, nur noch ganz bestimmte Energiezustände einzunehmen.

Die negativ geladenen Teilchen werden so gewissermaßen auf Bahnen gezwungen. Diese Energieniveaus wurden dann mit Lichtpulsen des Freie-Elektronen-Lasers am HZDR untersucht. „Der Laserpuls regt die Elektronen auf ein bestimmtes Landau-Niveau an. Ein zeitlich versetzter Puls fragt dann ab, wie sich das System entwickelt“, erklärt Martin Mittendorff, Doktorand am HZDR und Erstautor des Papers.

Umsortierung der Elektronen überrascht Wissenschaftler

Das Ergebnis der Versuche verblüffte die Wissenschaftler. Nach und nach leerte sich ausgerechnet das Energieniveau, in welches per Laser stets neue Elektronen gepumpt wurden. Den paradox wirkenden Effekt veranschaulicht Winnerl an einem Alltagsbeispiel: „Man stelle sich vor, eine Bibliothekarin sortiert Bücher in einem Regal mit drei Böden um. Sie stellt jeweils ein Buch vom unteren Boden in den mittleren. Gleichzeitig ‚hilft‘ ihr Sohn, indem er immer zwei Bücher aus der Mitte nimmt und eins davon in den oberen, das andere in den unteren Boden stellt. Der Junge macht das so eifrig, dass die Anzahl der Bücher im mittleren Boden abnimmt, obwohl seine Mutter ja gerade diesen Boden neu füllen möchte.“

Da es zu solchen Dynamiken zuvor weder Experimente noch Theorien gab, hatten die Dresdner Physiker anfangs Probleme, die Signale richtig zu deuten. Doch nach einigen Versuchen fanden sie eine Erklärung: Stoßprozesse zwischen Elektronen verursachen das ungewöhnliche Umsortieren. „Dieser Effekt ist als Auger-Streuung schon länger bekannt, doch niemand hätte erwartet, dass er so stark ist und ein Energieniveau immer leerer räumt“, erläutert Winnerl.

Diese neue Entdeckung könnte in Zukunft für die Entwicklung eines Lasers genutzt werden, der Licht mit beliebig einstellbarer Wellenlänge im Infrarot- und Terahertz-Bereich produzieren kann. „So ein Landau-Niveau-Laser galt lange als unmöglich, doch dank Graphen könnte dieser Traum der Halbleiter-Physiker durchaus wahr werden“, merkt Winnerl begeistert an.

Berliner Forscher berechnen komplexes Modell für Dresdner Experimente

Nachdem sich das grundlegende Modell in den Experimenten bewährt hatte, folgte an der Technischen Universität Berlin die theoretische Feinarbeit. Die Berliner Wissenschaftler Ermin Malic und Andreas Knorr bestätigten mit komplexen Berechnungen die Annahmen der Dresdner Gruppe und lieferten detaillierte Einblicke in die zugrundeliegenden Mechanismen. Zudem kooperierten die HZDR-Forscher mit dem französischen Hochfeld-Magnetlabor in Grenoble (Laboratoire National des Champs Magnétiques Intenses – LNCMI), der Karls-Universität Prag und dem US-amerikanischen Georgia Institute of Technology, Atlanta.

Die Forschung wurde von der Deutschen Forschungsgemeinschaft (DFG) innerhalb des Schwerpunktprogramms „Graphen“ gefördert.

Publikation: Martin Mittendorff, Stephan Winnerl u.a.: „Carrier dynamics in Landau quantized graphene featuring strong Auger scattering“, Nature Physics, im Druck, DOI: 10.1038/NPHYS3164

Weitere Informationen
Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. 0351 260-3522
s.winnerl@hzdr.de

Pressekontakt
Dr. Christine Bohnet | Pressesprecherin
Tel. 0351 260-2450 | 0160 969 288 56 | c.bohnet@hzdr.de | www.hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf
Bautzner Landstr. 400 | 01328 Dresden

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Materie, Gesundheit und Energie. Folgende Fragestellungen stehen hierbei im Fokus:

• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Zur Beantwortung dieser wissenschaftlichen Fragen werden Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 1.1.2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon ca. 500 Wissenschaftler inklusive 150 Doktoranden.


Weitere Informationen:

http://www.hzdr.de/presse

Dr. Christine Bohnet | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie