Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Licht sich in Materie wandelt

17.02.2014
Physikerinnen und Physiker der TU Berlin entwickeln eine hochempfindliche optische Nachweistechnik, um die quantenoptische Kopplung von Licht und Materie auch bei Raumtemperatur zu messen – für die Zukunft der ultraschnellen Datenkommunikation

Einer Arbeitsgruppe um die TU-Physikprofessorin Ulrike Woggon ist es gelungen, die quantenoptische Kopplung von Licht und Materie an einem Halbleiterbauelement unter realistischen Betriebsbedingungen nachzuweisen. Das war bisher nur bei Atomen und tiefkalten Systemen möglich.


Das Herzstück des Versuchsaufbaus im Femtosekundenlaserlabor: Apparatur zum Messen nichtlinear-optischer Effekte an Halbleiternanostrukturen
© TU Berlin/PR/Ulrich Dahl

Damit eröffnen sich ganz neue Möglichkeiten für die ultraschnelle Datenverarbeitung in der Telekommunikation. Die Ergebnisse des von Ulrike Woggon geführten Teams wurden als „open access“-Artikel in der Dezemberausgabe von Nature Communications veröffentlicht.

„Das vom Menschen mittels Licht gesteuerte Erzeugen, Besetzen und Auslesen von Quantenzuständen ist ein Wunschtraum der modernen Quantenphysik“, schwärmt Prof. Dr. Ulrike Woggon, Professorin am Institut für Optik und Atomare Physik der TU Berlin. „Angefangen hat alles mit der Vision, genau den Moment beobachten zu können, in dem ein Energiequant von Licht in Materie fließt“, so Prof. Dr. Ulrike Woggon. Sie spricht über die quantenoptische Kopplung von Licht und Materie und dem Ziel, diese für die ultraschnelle Signalmodulation anzuwenden.

Im Moment sind diese aufgrund der verwendeten Materialien limitiert auf den Bereich von Pikosekunden (eine Pikosekunde entspricht 10-12 Sekunden). Werden optische Daten noch dichter gepackt, besteht die Gefahr, dass die darin kodierte Information verfälscht wird oder sogar verloren geht. Signale, die über lange Strecken durch Glasfaserkabel transportiert werden, müssen zudem verstärkt werden.

„In unserem Experiment wird ein ultrakurzer Laserpuls durch einen Halbleiterverstärker geschickt, um danach die Änderungen in seiner Phase und Feldamplitude auszuwerten, alles mit einer Zeitauflösung von einer Zehntausendstel Pikosekunde“, erklärt Doktorand Mirco Kolarczik. Das Halbleiterbauelement besteht aus einer speziell entwickelten Nanostruktur, in der die Licht-Materie Kopplung über den elektrischen Strom geschaltet werden kann. Im „Zentrum für NanoPhotonik“ der TU Berlin werden entsprechende nanoskalige Halbleitersysteme in Form von „künstlichen Atom“-Pendants designed und hergestellt.

Sie weisen wesentliche Eigenschaften rein atomarer Systeme, wie zum Beispiel diskrete Energiezustände und optische Übergänge im nahen infraroten und sichtbaren Spektralbereich auf. „Wichtig für unseren Versuch sind dabei Halbleiternanostrukturen, deren Größe in allen drei Raumrichtungen nur wenige Nanometer beträgt und die wir als Quantenpunkte bezeichnen“, erläutert Dr. Nina Owschimikow. „Wie in Atomen sind in Halbleiterquantenpunkten die Zustände diskret und gehorchen den fundamentalen Gesetzen der Quantenmechanik.“

Erfolg mit der Nachweistechnik „FROSCH“

Festkörperbasierte Halbleitersysteme zeigen jedoch unter realen Umweltbedingungen innerhalb eines Zeitbereiches von 10 bis 100 Femtosekunden (1fs = 10-15s) einen schnellen Verlust der Phaseninformation in den Signalen (die sogenannte Quantendekohärenz) - verursacht durch die Wechselwirkung, zum Beispiel mit den sie umgebenden Ladungen. Jenseits dieses Zeitfensters bleibt die Quantennatur der elementaren Prozesse dem Beobachter verborgen. Das Phänomen der schnellen Dekohärenz bei nanostrukturierten Halbeitersystemen ist seit langem bekannt, und man ging bisher davon aus, dass nur bei sehr niedrigen Temperaturen bei Heliumkühlung und unter Laborbedingungen Quantenkohärenz messbar wäre – und damit also für den Alltagsgebrauch in der Datenübertragung unbrauchbar. Durch die Entwicklung einer mit dem Begriff „FROSCH“ abgekürzten ultraschnellen, hochempfindlichen, optischen Nachweistechnik ist es nun dem Forscherteam der TU Berlin gelungen, sehr präzise einen durch das Bauelement propagierenden Lichtpuls zu vermessen.

„FROSCH“ steht für „Frequency-Resolved-Optical-Shortpulse-Characterization-by-Heterodyning”. In enger Zusammenarbeit mit theoretischen Physikern aus der Gruppe von PD Dr. Kathy Lüdge und Prof. Dr. Eckehard Schöll, die die Effekte quantenkohärenter Wechselwirkung auf den Lichtpuls in einem umfangreichen mikroskopischen Modell berechneten, konnte damit die Robustheit der Quantenkohärenz in Quantenpunktbauelementen auch bei Raumtemperatur und unter realen Betriebsbedingungen nachgewiesen werden.

Dipl.-Phys. Mirco Kolarczik, Dr. Nina Owschimikow und Dipl.-Phys. Yücel Kaptan analysierten, wie Femtosekunden-Laserpulse ihre charakteristische Form verändern, wenn diese durch einen quantenpunktbasierten Halbleiter geschickt werden. Diese halbleiter-basierten Verstärker werden in der Arbeitsgruppe von Prof. Dr. Dieter Bimberg am „Zentrum für NanoPhotonik“ der TU Berlin zurzeit von Dipl.-Phys. Holger Schmeckebier entworfen und erforscht. Simulationen der Experimente durch M.Sc. Benjamin Lingnau und M.Sc. Julian Korn aus der Arbeitsgruppe von PD Dr. Kathy Lüdge und Prof. Eckehard Schöll aus dem Institut für Theoretische Physik der TU Berlin untermauerten die experimentellen Daten und ermöglichten ein tiefes Verständnis der auftretenden physikalischen Effekte.

„Unser System ist in der Lage, die Entwicklung der gesamten Amplituden- und Phaseninformation zu lesen, die der Quantenzustand innerhalb weniger Femtosekunden unter Raumtemperaturbedingungen in den Puls schreibt, und damit die quantenkohärente Licht-Materie-Kopplung nachzuweisen“, so Ulrike Woggon. „Basierend auf dieser Grundlagenforschung sollte es später möglich sein, bei der Datenübertragung wesentlich mehr Informationen in einen Puls zu kodieren als gegenwärtig in der optischen Kommunikation und Informationsverarbeitung erreichbar ist.“

Katharina Jung

Der Originaltext der Arbeitsgruppe ist hier nachzulesen:

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge and U. Woggon: „Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature”, Nat. Commun. 4:2953 doi: 10.1038/ncomms3953 (2013).

www.nature.com/ncomms/2013/131216/ncomms3953/full/ncomms3953.html

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Ulrike Woggon, TU Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin, Tel.: 030 / 314-78921, -21699, E-Mail: ulrike.woggon@tu-berlin.de, www.ioap.tu-berlin.de/menue/arbeitsgruppen/

Die Medieninformation der TU Berlin im Überblick:
www.pressestelle.tu-berlin.de/medieninformationen/
Service für Journalistinnen und Journalisten:
Aufnahme in den Medienverteiler: www.tu-berlin.de/?id=1888
Veranstaltungen: www.tu-berlin.de/?id=115296
Forschungsberichte: www.tu-berlin.de/?id=113453
TU Berlin bei twitter: www.twitter.com/TUBerlin_PR
TU Berlin bei youtube: www.youtube.com/tuberlintv
Weitere Informationen:
http://www.tu-berlin.de/?id=144735
http://www.nature.com/ncomms/2013/131216/ncomms3953/full/ncomms3953.html
http://www.ioap.tu-berlin.de/menue/arbeitsgruppen

Stefanie Terp | idw
Weitere Informationen:
http://www.tu-berlin.de/?id=144735

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie