Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Licht sich in Materie wandelt

17.02.2014
Physikerinnen und Physiker der TU Berlin entwickeln eine hochempfindliche optische Nachweistechnik, um die quantenoptische Kopplung von Licht und Materie auch bei Raumtemperatur zu messen – für die Zukunft der ultraschnellen Datenkommunikation

Einer Arbeitsgruppe um die TU-Physikprofessorin Ulrike Woggon ist es gelungen, die quantenoptische Kopplung von Licht und Materie an einem Halbleiterbauelement unter realistischen Betriebsbedingungen nachzuweisen. Das war bisher nur bei Atomen und tiefkalten Systemen möglich.


Das Herzstück des Versuchsaufbaus im Femtosekundenlaserlabor: Apparatur zum Messen nichtlinear-optischer Effekte an Halbleiternanostrukturen
© TU Berlin/PR/Ulrich Dahl

Damit eröffnen sich ganz neue Möglichkeiten für die ultraschnelle Datenverarbeitung in der Telekommunikation. Die Ergebnisse des von Ulrike Woggon geführten Teams wurden als „open access“-Artikel in der Dezemberausgabe von Nature Communications veröffentlicht.

„Das vom Menschen mittels Licht gesteuerte Erzeugen, Besetzen und Auslesen von Quantenzuständen ist ein Wunschtraum der modernen Quantenphysik“, schwärmt Prof. Dr. Ulrike Woggon, Professorin am Institut für Optik und Atomare Physik der TU Berlin. „Angefangen hat alles mit der Vision, genau den Moment beobachten zu können, in dem ein Energiequant von Licht in Materie fließt“, so Prof. Dr. Ulrike Woggon. Sie spricht über die quantenoptische Kopplung von Licht und Materie und dem Ziel, diese für die ultraschnelle Signalmodulation anzuwenden.

Im Moment sind diese aufgrund der verwendeten Materialien limitiert auf den Bereich von Pikosekunden (eine Pikosekunde entspricht 10-12 Sekunden). Werden optische Daten noch dichter gepackt, besteht die Gefahr, dass die darin kodierte Information verfälscht wird oder sogar verloren geht. Signale, die über lange Strecken durch Glasfaserkabel transportiert werden, müssen zudem verstärkt werden.

„In unserem Experiment wird ein ultrakurzer Laserpuls durch einen Halbleiterverstärker geschickt, um danach die Änderungen in seiner Phase und Feldamplitude auszuwerten, alles mit einer Zeitauflösung von einer Zehntausendstel Pikosekunde“, erklärt Doktorand Mirco Kolarczik. Das Halbleiterbauelement besteht aus einer speziell entwickelten Nanostruktur, in der die Licht-Materie Kopplung über den elektrischen Strom geschaltet werden kann. Im „Zentrum für NanoPhotonik“ der TU Berlin werden entsprechende nanoskalige Halbleitersysteme in Form von „künstlichen Atom“-Pendants designed und hergestellt.

Sie weisen wesentliche Eigenschaften rein atomarer Systeme, wie zum Beispiel diskrete Energiezustände und optische Übergänge im nahen infraroten und sichtbaren Spektralbereich auf. „Wichtig für unseren Versuch sind dabei Halbleiternanostrukturen, deren Größe in allen drei Raumrichtungen nur wenige Nanometer beträgt und die wir als Quantenpunkte bezeichnen“, erläutert Dr. Nina Owschimikow. „Wie in Atomen sind in Halbleiterquantenpunkten die Zustände diskret und gehorchen den fundamentalen Gesetzen der Quantenmechanik.“

Erfolg mit der Nachweistechnik „FROSCH“

Festkörperbasierte Halbleitersysteme zeigen jedoch unter realen Umweltbedingungen innerhalb eines Zeitbereiches von 10 bis 100 Femtosekunden (1fs = 10-15s) einen schnellen Verlust der Phaseninformation in den Signalen (die sogenannte Quantendekohärenz) - verursacht durch die Wechselwirkung, zum Beispiel mit den sie umgebenden Ladungen. Jenseits dieses Zeitfensters bleibt die Quantennatur der elementaren Prozesse dem Beobachter verborgen. Das Phänomen der schnellen Dekohärenz bei nanostrukturierten Halbeitersystemen ist seit langem bekannt, und man ging bisher davon aus, dass nur bei sehr niedrigen Temperaturen bei Heliumkühlung und unter Laborbedingungen Quantenkohärenz messbar wäre – und damit also für den Alltagsgebrauch in der Datenübertragung unbrauchbar. Durch die Entwicklung einer mit dem Begriff „FROSCH“ abgekürzten ultraschnellen, hochempfindlichen, optischen Nachweistechnik ist es nun dem Forscherteam der TU Berlin gelungen, sehr präzise einen durch das Bauelement propagierenden Lichtpuls zu vermessen.

„FROSCH“ steht für „Frequency-Resolved-Optical-Shortpulse-Characterization-by-Heterodyning”. In enger Zusammenarbeit mit theoretischen Physikern aus der Gruppe von PD Dr. Kathy Lüdge und Prof. Dr. Eckehard Schöll, die die Effekte quantenkohärenter Wechselwirkung auf den Lichtpuls in einem umfangreichen mikroskopischen Modell berechneten, konnte damit die Robustheit der Quantenkohärenz in Quantenpunktbauelementen auch bei Raumtemperatur und unter realen Betriebsbedingungen nachgewiesen werden.

Dipl.-Phys. Mirco Kolarczik, Dr. Nina Owschimikow und Dipl.-Phys. Yücel Kaptan analysierten, wie Femtosekunden-Laserpulse ihre charakteristische Form verändern, wenn diese durch einen quantenpunktbasierten Halbleiter geschickt werden. Diese halbleiter-basierten Verstärker werden in der Arbeitsgruppe von Prof. Dr. Dieter Bimberg am „Zentrum für NanoPhotonik“ der TU Berlin zurzeit von Dipl.-Phys. Holger Schmeckebier entworfen und erforscht. Simulationen der Experimente durch M.Sc. Benjamin Lingnau und M.Sc. Julian Korn aus der Arbeitsgruppe von PD Dr. Kathy Lüdge und Prof. Eckehard Schöll aus dem Institut für Theoretische Physik der TU Berlin untermauerten die experimentellen Daten und ermöglichten ein tiefes Verständnis der auftretenden physikalischen Effekte.

„Unser System ist in der Lage, die Entwicklung der gesamten Amplituden- und Phaseninformation zu lesen, die der Quantenzustand innerhalb weniger Femtosekunden unter Raumtemperaturbedingungen in den Puls schreibt, und damit die quantenkohärente Licht-Materie-Kopplung nachzuweisen“, so Ulrike Woggon. „Basierend auf dieser Grundlagenforschung sollte es später möglich sein, bei der Datenübertragung wesentlich mehr Informationen in einen Puls zu kodieren als gegenwärtig in der optischen Kommunikation und Informationsverarbeitung erreichbar ist.“

Katharina Jung

Der Originaltext der Arbeitsgruppe ist hier nachzulesen:

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge and U. Woggon: „Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature”, Nat. Commun. 4:2953 doi: 10.1038/ncomms3953 (2013).

www.nature.com/ncomms/2013/131216/ncomms3953/full/ncomms3953.html

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Ulrike Woggon, TU Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin, Tel.: 030 / 314-78921, -21699, E-Mail: ulrike.woggon@tu-berlin.de, www.ioap.tu-berlin.de/menue/arbeitsgruppen/

Die Medieninformation der TU Berlin im Überblick:
www.pressestelle.tu-berlin.de/medieninformationen/
Service für Journalistinnen und Journalisten:
Aufnahme in den Medienverteiler: www.tu-berlin.de/?id=1888
Veranstaltungen: www.tu-berlin.de/?id=115296
Forschungsberichte: www.tu-berlin.de/?id=113453
TU Berlin bei twitter: www.twitter.com/TUBerlin_PR
TU Berlin bei youtube: www.youtube.com/tuberlintv
Weitere Informationen:
http://www.tu-berlin.de/?id=144735
http://www.nature.com/ncomms/2013/131216/ncomms3953/full/ncomms3953.html
http://www.ioap.tu-berlin.de/menue/arbeitsgruppen

Stefanie Terp | idw
Weitere Informationen:
http://www.tu-berlin.de/?id=144735

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz