Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht-induzierte Supraleitung unter hohem Druck

09.05.2018

Wissenschaftler des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am Center for Free-Electron Laser Science in Hamburg haben die licht-induzierte Supraleitung im Alkali-dotierten Fullerid K3C60 unter hohem, extern angelegtem Druck untersucht. Auf der einen Seite erlaubt diese Studie, die Natur des transienten Zustandes eindeutig als supraleitende Phase zu bestimmen. Darüber hinaus enthüllt sie die Möglichkeit, Supraleitung in K3C60 bei Temperaturen weit oberhalb der zuvor hypothesierten -170°C, sogar bis hinauf zur Zimmertemperatur, zu induzieren. Das Manuskript von Cantaluppi et al. wurde in Nature Physics veröffentlicht.

Im Gegensatz zu gewöhnlichen Metallen besitzen Supraleiter die einzigartige Fähigkeit, elektrischen Strom ohne jegliche Verluste zu leiten. Technologische Anwendungen sind heutzutage jedoch durch ihre tiefen Arbeitstemperaturen, die im besten Falle -70°C sein können, eingeschränkt.


Licht-induzierte Supraleitung in K3C60 wurde unter hohem Druck in einer Diamant-Ambosszelle untersucht.

Jörg Harms, MPSD

Wissenschaftler der Arbeitsgruppe von Professor Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg haben in der Vergangenheit mehrfach intensive Laserpulse genutzt um verschiedene Klassen von Supraleitern zu stimulieren. Unter bestimmten Bedingungen erbrachten sie dabei Beweise für Supraleitung bei ungewöhnlich hohen Temperaturen, obwohl dieser Zustand stets nur für den Bruchteil von Sekunden kurzlebig war.

Ein wichtiges Beispiel für diesen Effekt ist K3C60, ein aus schwach wechselwirkenden C60-„Fußbällen“ gebildeter organischer Molekülkristall, der im Gleichgewicht unterhalb der Sprungtemperatur von -250°C supraleitend ist.

Im Jahr 2016 entdeckten Mitrano und Mitarbeiter am MPSD, dass maßgeschneiderte Laserpulse, die Schwingungen der C60-Moleküle anregen, einen kurzlebigen Zustand hoher Leitfähigkeit mit Eigenschaften gleich denen eines Supraleiters induzieren, und zwar bis hinauf zu Temperaturen von -170°C - weit oberhalb der Gleichgewichts-Sprungtemperatur.

In der jüngsten Studie gingen A. Cantaluppi und M. Buzzi am MPSD in Hamburg einen entscheidenden Schritt weiter und betrachteten den licht-induzierten Zustand in K3C60, während mechanischer Druck unter Verwendung einer Diamant-Ambosszelle angelegt wurde. Im Gleichgewicht sorgt dieser Druck für eine Reduzierung der Abstände der C60 Moleküle, wodurch der supraleitende Zustand des Kalium-dotierten Fullerids geschwächt und die kritische Temperatur deutlich gesenkt wird.

„Zu verstehen, ob in K3C60 der licht-induzierte Zustand in gleicher Form reagiert wie der Gleichgewichts-Supraleiter ist ein entscheidender Schritt, um eindeutig die Natur dieses Zustandes zu bestimmen und kann neue Hinweise zum physikalischen Mechanismus hinter der licht-induzierten Hochtemperatur-Supraleitung liefern“, sagt Alice Cantaluppi.

Der licht-angeregte K3C60 Fullerid wurde systematisch untersucht, und zwar in einer Spanne vom umgebenden Normaldruck bis zu 2.5 GPa, was dem 25.000-fachen des Atmosphärendrucks entspricht. Die Autoren beobachteten eine starke Reduzierung der Photo-Leitfähigkeit mit zunehmendem Druck. Dieses Verhalten ist sehr verschieden von dem eines gewöhnlichen Metalls, aber im Einklang mit der Phänomenologie eines Supraleiters und steht daher für die erste eindeutige Interpretation des licht-induzierten Zustands in K3C60 als transiente supraleitende Phase.

„Erwähnenswert“, sagt Michele Buzzi, „beobachteten wir, dass wir bei stärkerer optischer Anregung einen transienten Supraleiter auch bei Temperaturen weit oberhalb der zuvor bestimmten -170°C erreichten, sogar bis hinauf zur Zimmertemperatur.“

Eine universelle Beschreibung des physikalischen Mechanismus hinter dem Phänomen der licht-induzierten Hochtemperatur-Supraleitung in K3C60 fehlt jedoch noch, und das ultimative Ziel der Erreichung eines stabilen Zimmertemperatur-Supraleiters ist noch immer nicht an der nächsten Ecke zu finden. Nichtsdestotrotz soll der neuartige Ansatz des MPSD Teams, der die optische Anregung mit der Anwendung anderer externer Stimuli wie zum Beispiel mechanischen Drucks oder magnetischer Felder, vereint, den Weg in diese Richtung ebnen, um die Bereitstellung, die Kontrolle und das Verständnis neuer Phänomene in komplexen Materialien zu ermöglichen.

Diese Arbeit wurde finanziell unterstützt durch den ERC Synergy Grant “Frontiers in Quantum Materials’ Control” (Q-MAC), das Hamburg Centre for Ultrafast Imaging (CUI), und das Schwerpunktprogramm SFB925 der Deutschen Forschungsgemeinschaft. Die Experimente wurden in den Laboren des Center for Free-Electron Laser Science (CFEL), einem Joint-Enterprise des DESY, der Max-Planck-Gesellschaft und der Universität Hamburg durchgeführt. Die Arbeiten erfolgten in enger Kooperation mit Wissenschaftlern der Universität Parma und der ELETTRA Synchrotron Facility, Triest, Italien.

Weitere Informationen erhältlich von Jenny Witt, PR und Öffentlichkeitsarbeit MPSD
Email: jenny.witt@mpsd.mpg.de
Tel: +49 40 8998 6593

Weitere Informationen:

http://www.nature.com/articles/s41567-018-0134-8
http://www.mpsd.mpg.de

Jenny Witt | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenverschränkung auf den Kopf gestellt
22.05.2018 | Universität Innsbruck

nachricht Kosmische Ravioli und Spätzle
22.05.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

22.05.2018 | Biowissenschaften Chemie

Mikroskopie der Zukunft

22.05.2018 | Medizintechnik

Designerzellen: Künstliches Enzym kann Genschalter betätigen

22.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics