Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leichte Atomkerne und ihre Antikerne im präzisen Vergleich

20.08.2015

Forscher der Universität Tübingen an großem internationalem Team am CERN beteiligt – Studie zur Symmetrie von Materie und ihrem Gegenstück

In einer aufwändigen Messung an ALICE (A Large Ion Collider Experiment) am Kernforschungszentrum CERN in Genf hat ein Team aus mehreren Hundert internationalen Wissenschaftlern, darunter auch drei von der Universität Tübingen, die Eigenschaften von leichten Atomkernen und ihren Antikernen vergleichend untersucht.

An dem Versuchsaufbau waren von der Universität Tübingen Professor Hans Rudolf Schmidt, Dr. Jens Wiechula (jetzt Universität Frankfurt) und Benjamin Hess vom Physikalischen Institut beteiligt. Mit größerer Präzision als bisher hat das Wissenschaftlerteam gemessen, dass sich leichte Atomkerne und ihre Antikerne genau symmetrisch zueinander verhalten. Die Ergebnisse wurden in der Fachzeitschrift Nature Physics veröffentlicht.

Die gewöhnliche Materie, die wir auf der Erde kennen, hat einen schwer fassbaren Gegenpart, die Antimaterie. Normale Materie besteht aus Atomen, die sich wiederum als ein ganzes System wechselwirkender Teilchen beschreiben lassen.

Zu jedem Teilchen gibt es in der Antimaterie ein Antiteilchen mit den gleichen Eigenschaften, aber entgegengesetzter elektrischer Ladung. In Gegenwart von gewöhnlicher Materie kann die Antimaterie nicht existieren und kommt auf der Erde nicht vor.

Doch sie kann in einem großen Teilchenbeschleuniger wie am CERN für einen kurzen Moment erzeugt werden. Damit Antimaterie entstehen kann, muss normale Materie im Experiment auf über eine Billion Grad Celsius aufgeheizt werden.

Das ALICE-Team hat seine Messungen an Deuterium-Kernen, das sind schwere Wasserstoffkerne, die neben dem Proton ein zusätzliches Neutron enthalten, und ihren Antikernen durchgeführt. Außerdem untersuchten die Wissenschaftler Helium-3-Kerne, die gegenüber normalem Helium aus zwei Protonen und zwei Neutronen ein Neutron weniger enthalten, und ihrem Antistück.

Die Wissenschaftler bestimmten jeweils das Verhältnis von Masse zu Ladung. Messungen zu den gleichen Eigenschaften wurden zuvor mit großer Präzision an Protonen und Antiprotonen durchgeführt, die bereits eine genaue Symmetrie ergeben hatten. Diese Erkenntnisse haben die Wissenschaftler mit der neuen ALICE-Studie weitergetrieben, denn im Atomkern sind die Protonen mit Neutronen verbunden, sodass sich Unterschiede in der Bindung gegenüber den entsprechenden Antiprotonen zu den Antineutronen ergeben könnten.

Die technischen Herausforderungen bei einem solchen Experiment sind im Großen wie im Kleinen riesig: Einerseits müssen mit Hilfe immenser Energien bei der Kollision von Blei-Ionen die leichten Antikerne erzeugt werden, andererseits müssen die Detektoren bei der Messung der Kerne und Antikerne verschwindend kleine Energiemengen präzise erfassen.

Bei der Kollision der Blei-Ionen im ALICE-Experiment wurden Kerne und entsprechende Antikerne in fast gleicher Rate erzeugt. Dadurch konnten ihre Eigenschaften über die Bestimmung der Trajektorien im Magnetfeld der Detektoren sowie über ihre Flugzeit bis zum Auftreffen auf den Detektor sehr genau verglichen werden.

Die gemessenen Unterschiede im Masse-Ladungs-Verhältnis der Deuterium-/Antideuteriumkerne sowie der Helium-3-Kerne/-Antikerne können die Forscher unter Einbeziehung der geschätzten Messunsicherheiten als mit Null vereinbar angeben.

Damit bestätigen sie eine fundamentale Symmetrie, das sogenannte CPT-Theorem, das besagt, dass leichte Atomkerne und ihre Antikerne den gleichen physikalischen Gesetzen unterliegen. Die Erkenntnisse aus der Grundlagenforschung bestätigen das Standardmodell der Elementarteilchen und ihrer Kräfte und sind für kosmologische Forschungen von hoher Relevanz.

Originalpublikation:
ALICE Collaboration: Precision measurement of the mass difference between light nuclei and anti-nuclei. Nature Physics, Online-Veröffentlichung am 17. August 2015, doi:10.1038/nphys3432

Kontakt:
Prof. Dr. Hans Rudolf Schmidt
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Physikalisches Institut
Telefon +49 7071 29-74451
hans-rudolf.schmidt[at]uni-tuebingen.de

Weitere Informationen:

http://www.youtube.com/watch?v=uooIcCJJttU - Englische Zusammenfassung im Kurzfilm auf Youtube

Janna Eberhardt | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Berichte zu: Antimaterie Atomkerne CERN Detektoren Kollision Neutron Neutronen Protonen Präzision Symmetrie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie