Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserpulse erzeugen Nano-Antennen

03.06.2014

Nur zwei kurze Laserblitze benötigt man an der TU Wien um an einer Aluminium-Oberfläche Nano-Strukturen zu erzeugen, die den photoelektrischen Effekt des Materials drastisch verstärken.

Wenn man fest mit einem zentimetergroßen Hammer auf eine Metallplatte schlägt, kann man nicht erwarten, dass man dadurch millimeterfeine Kunstgravuren hinterlässt. Ein vergleichbares Kunststück gelingt allerdings an der TU Wien mit Hilfe von Laserpulsen: Beschießt man Metalloberflächen auf die richtige Weise mit Laserlicht, entstehen feine Antennenstrukturen, die um Größenordnungen kleiner sind als der Durchmesser des Laserpulses. Diese Nano-Antennen eigenen sich hervorragend zum Aussenden von Elektronen.


Die Nanoantenne nach dem Laserbeschuss

TU Wien


Letzte Feinjustage für die Bearbeitung einer Oberfläche mit sub-10fs Laserstrahlung.

TU Wien

Spitze Strukturen fördern den photoelektrischen Effekt

Wenn Licht auf eine Metalloberfläche auftrifft, können Elektronen herausgelöst werden. Dieser „photoelektrische Effekt“ ist schon lange bekannt. Doch nicht überall fällt es den Elektronen gleichermaßen leicht, die Oberfläche zu verlassen: Weist sie feine, spitze Strukturen auf, lösen sich deutlich mehr Elektronen heraus als das bei einer völlig glatten Oberfläche möglich wäre. Genau in den Spitzen tritt nämlich ein besonders starkes elektrisches Feld auf. Dieser Effekt ähnelt der Tendenz eines Blitzes, in hohen, spitzen metallischen Masten einzuschlagen.

Besonders stark ist dieser Effekt, wenn die Spitze auch noch einer Mulde sitzt, die einfallende Wellen zur Spitze hin fokussiert. Die Herstellung solcher Strukturen gelang nun Prof. Wolfgang Husinsky vom Institut für Angewandte Physik der TU Wien in Zusammenarbeit mit führenden Fachkollegen aus Russland (Sergey Makarov,Sergey Kudryashov, Lebedev Physics Institute Russian Academy of Sciences).

„Je nachdem, welche Laserparameter man wählt, können Laserpulse zu Nanostrukturen verschiedenster Art führen“, sagt Wolfgang Husinsky. Ausschlaggebend sind die Laserleistung, die Pulszeit, die genaue Form des Laserpulses sowie die Anzahl der Pulse, die man auf die Oberfläche abfeuert. Am Institut für Angewandte Physik der TU Wien wird schon lange an extrem kurzen Laserpulsen geforscht: Weniger als 10 Femtosekunden (10^(-15) Sekunden) dauern die kürzesten Lichtblitze in Wolfgang Husinskys Labor.

Erst ein Krater, dann eine Antenne

Der Erfolg stellte sich mit einer Kombination aus zwei Laserpulsen ein: Der erste hinterlässt kreisrunde Krater mit einem Durchmesser von etwa 1.3 Mikrometern. Schuld daran sind Plasmonen und Polaritonen – Anregungen der Elektronen im Metall und Kopplungen von elektrischen Feldern mit Atomschwingungen. Der Bereich, der vom Laserpuls beleuchtet wird, ist viel größer als diese Krater, so kann also ein einziger Laserpuls eine Vielzahl an Kratern erzeugen.

Wenn man dann dieselbe Stelle noch einmal mit einem weiteren Laserpuls beschießt, dann bildet sich bei geeigneten Laserparametern in den Kratern eine Spitze aus. Das elektrische Feld des Lasers wird durch die Form des Kraters lokal verändert, und dieses starke Feld wird durch die nadelförmige Antenne, die bloß einige Dutzend Nanometer dick ist, weiter verstärkt Diese Nanoantennen im Mikro-Krater sind perfekt für die Elektronenemission. Wenn Licht auf diese Nanostrukturen fällt, wird es vom Krater auf die Spitze fokussiert, ähnlich wie ein Parabolschirm die Wellen eines Satelliten auf die Fernsehantenne lenkt. So ist eine fünfzigmal höhere Elektronenemission möglich als bei einer völlig ebenen und glatten Metalloberfläche.

Vom Aluminium bis zum Protein

„Die Materialbearbeitung mit ultrakurzen Laserpulsen ist ein boomendes Forschungsgebiet, das bei vielen verschiedene Materialien tolle Anwendungsmöglichkeiten verspricht“, ist Wolfgang Husinsky überzeugt. Im Rahmen des von der österreichischen Forschungsgesellschaft FFG geförderten Projektes gemeinsam mit einem Partnerunternehmen, der Femtolasers Produktions-GmbH, untersucht er mit seinem Team Strukturierungsmöglichkeiten von Metallen bis hin zu organischen Materialien wie Kollagen, dem Hauptbestandteil unserer Knochen.

Die Strukturen, die mit Laserpulsen auf Oberflächen erzeugt werden, sind meist winzig, doch verhältnismäßig große Flächen können in einem einzigen Schritt bearbeitet werden. In bestimmten Fällen lassen sich zentimetergroße periodische Strukturen erzeugen. Das ist allerdings nur möglich, wenn man die mikroskopischen Abläufe auf der Festkörperoberfläche genau versteht: „Wenn wir eine Folge von mehreren Laserpulsen auf die Oberfläche abfeuern, dann gibt es eine riesengroße Anzahl an Parametern, die man einstellen kann“, sagt Wolfgang Husinsky. „Die Zahl der Pulse, die Intensität, die Dauer jedes einzelnen Pulses – es ist völlig undenkbar, jede mögliche Parameter-Kombination durchzuprobieren, um das optimale Resultat zu erhalten.“

Man wird also auch weiterhin gut durchdachte Grundlagenexperimente und Simulationsrechnungen benötigen, um ähnliche Erfolge erzielen können wie mit den Nanoantennen.

Die Forschungsergebnisse wurden nun im Fachjournal Laser Physics Letter publiziert:
Laser Physics Letters Vol 11, Number 6 , 1 June 2014 , 065302

Rückfragehinweis:
Prof. Wolfgang Husinsky
Institut für Angewandte Physik
Technische Universität Wien
Wieder Hauptstrasse 8-10
1040 Wien, Austria
T: +43 1 58801 13441
husinsky@iap.tuwien.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/nano_antennen/ Bilderdownload

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften