Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserlicht kühlt nanomechanisches Objekt in den "Quanten-Grundzustand"

07.10.2011
Forschern am California Institute of Technology und am Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien ist es gelungen, erstmals kleine mechanische Objekte mithilfe von Laserlicht in ihren kleinstmöglichen Energiezustand zu kühlen.

Dies eröffnet neue Möglichkeiten sowohl für Anwendungen – etwa im Bereich extrem empfindlicher Sensoren – als auch für grundlegende Fragestellungen im Grenzbereich zwischen der Welt der Quantenphänomene und unserer Alltagswelt. Die Forschungsergebnisse werden in der aktuellen Ausgabe der Fachzeitschrift "Nature" publiziert.


Elektromikroskopische Aufnahme der von den Forschern verwendeten winzigen mechanischen Brücke aus Silizium. (Bild: Caltech/Painter et al.)

Nur etwa ein tausendstel Millimeter breit und mehrere hundertstel Millimeter lang sind die mechanisch schwingenden Objekte, die das internationale Forschungsteam verwendet hat. Dabei handelt es sich um winzige mechanische Brücken aus Silizium. In diese wird Laserlicht einer bestimmten Frequenz eingebracht und – sobald es reflektiert wird – Wärmeenergie abtransportiert, wodurch das System gekühlt wird. "Wir haben ein mechanisches Objekt verwendet, das aus Milliarden von Atomen besteht, und dieses mit Laserlicht in einen Zustand versetzt, in dem es sich nach den Regeln der Quantenphysik verhält. Bislang ist das nur mit einzelnen Atomen oder Ionen gelungen", erklärt Oskar Painter, Professor für angewandte Physik am California Institute of Technology (Caltech) und Leiter des Forschungsprojekts.

Dieses Kühlverfahren wurde 2006 von Wissenschaftern um Markus Aspelmeyer, Professor für Quantum Information on the Nanoscale an der Universität Wien, an mikroskopischen Sprungbrettern gezeigt. Die damals erreichten Temperaturen waren aber noch weit vom Quantenregime entfernt. Ein am Caltech entwickeltes Design der mechanischen Siliziumbrücken ermöglichte es den Forschern nun, diese Laser-Kühltechniken zu verwenden, um das System in den "Quanten-Grundzustand" zu bringen. "In diesem Zustand sind mechanische Schwingungen auf ein absolutes Minimum reduziert; die verbleibende sogenannte 'Nullpunkts-Schwingung' kann nur durch die Quantenphysik erklärt werden", so Aspelmeyer.

Phononen aus dem System entfernt

Um zu zeigen, ob die bizarren Gesetze der Quantenphysik auch für massive Objekte wie mikromechanische Brücken gelten, etwa dass sich ein Objekt so verhält als wäre es an zwei Orten gleichzeitig, muss sich das mechanische Objekt dafür zunächst sehr nahe am "Quanten-Grundzustand" befinden. Dafür mussten die Physiker die mechanische Brücke auf eine Temperatur unterhalb eines Zehntels eines Kelvins (-273,15°C) kühlen. Da die Frequenz der mechanischen Schwingung einige Gigahertz beträgt, das entspricht mehreren Milliarden Schwingungen pro Sekunde, ist bei Zimmertemperatur noch eine große Anzahl von Phononen vorhanden. Phononen sind die Quanten der mechanischen Schwingung – genauso wie die Photonen die Quanten des Lichts sind. "Um die Bewegung eines mechanischen Objekts in den 'Quanten-Grundzustand' zu kühlen, müssen daher alle Phononen der Bewegung entfernt werden", sagt Simon Gröblacher, Co-Autor der Studie.

Alternative Kühlstrategie

Zwar existieren bereits konventionelle Kühlmethoden, um derartig niedrige Temperaturen zu erreichen; diese sind aber sehr kostspielig und bergen Probleme bei der Messung des kalten mechanischen Objekts. Die Forscher wählten daher eine andere Kühlstrategie: "Wir haben die Photonen – das Lichtfeld – verwendet, um die Phononen aus dem System herauszubekommen", so Jasper Chan, Erstautor des Papers. Kleine Löcher werden dafür an speziellen Stellen in die mechanische Brücke gebohrt. Wenn Laserlicht einer bestimmten Frequenz entlang der Brücke geführt wird, bilden die Löcher eine Art Spiegel, zwischen denen das Licht reflektiert wird. Dadurch kommt es zu einer starken Wechselwirkung zwischen dem Licht und den mechanischen Vibrationen der Brücke, also zwischen Photonen und Phononen.

Das aus der "Spiegel"-Anordnung entweichende Licht trägt aufgrund dieser Wechselwirkung neben der Energie der Phononen auch Information über das mechanische Objekt nach außen, etwa dessen Bewegung und Temperatur. Auf diese Weise schaffen die Forscher eine effiziente optische Schnittstelle zu einem mechanischen Element. Dieser "optische Signalwandler" tauscht Informationen eines mechanischen Systems in Photonen um und könnte sich als äußerst hilfreich bei der Verknüpfung verschiedener Quantensysteme erweisen – beispielsweise zwischen optischen und Mikrowellen-Systemen.

Meilenstein – und doch erst am Anfang

Das Team von Caltech und der Universität Wien/VCQ ist zwar nicht das erste, das nanomechanische Objekte in den Grundzustand kühlt: eine Gruppe rund um Andrew Cleland und John Martinis an der University of California in Santa Barbara hat dies bereits 2010 mittels konventioneller Kühltechniken geschafft, und in diesem Jahr konnte eine Gruppe um John Teufel vom National Institute of Standards and Technology in Boulder, Colorado, ein mikromechanisches Objekt mittels Mikrowellenstrahlung in den Grundzustand kühlen. Die jetzige Arbeit ist jedoch die erste, die Laserlicht verwendet, um ein nanomechanisches Objekt in den Grundzustand zu kühlen.

"Die angewandte Methode, nanomechanische Objekte in den Grundzustand zu kühlen, ist ein Meilenstein, weil es so viele etablierte Verfahren zur Manipulation und Messung von Quanteneigenschaften mit Hilfe von Laserlicht gibt", sagt Painter. Durch die Laserkühlung können Experimente bei weit höheren Temperaturen durchgeführt werden und den Grundzustand bei einer Anfangstemperatur erreichen, die nur etwa zehn Mal kühler als die Raumtemperatur ist.

"Die derzeitigen Entwicklungen auf dem Gebiet der Quantenphysik mit massiven mechanischen Objekten sind atemberaubend", konstatiert Markus Aspelmeyer. "Durch die Kooperation von Forschern am Caltech mit Kollegen an der Universität Wien generieren wir einen einzigartigen Mix an Know-how: völlig neue nanomechanische Strukturen kombiniert mit den Werkzeugen der Quantenoptik und mit spannenden Fragen der Quantenphysik. Dabei sind wir mit der Erforschung dieser Quantensysteme erst am Anfang."

Publikation
Laser cooling of a nanomechanical oscillator into its quantum ground state
Jasper Chan, T. P. Mayer Alegre, Amir H. Safavi-Naeini, Jeff T. Hill, Alex Krause, Simon Gröblacher, Markus Aspelmeyer, Oskar Painter. In: Nature 478, 89–92 (2011).
DOI: 10.1038/nature10461
Volltext: http://www.nature.com/nature/journal/v478/n7367/full/nature10461.html
Wissenschaftlicher Kontakt
Mag. Simon Gröblacher
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Boltzmanngasse 3
T +43-1-4277-295 57
simon.groeblacher@univie.ac.at
Rückfragehinweis
Mag. Alexandra Seiringer
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 31
alexandra.seiringer@univie.ac.at

Alexander Dworzak | Universität Wien
Weitere Informationen:
http://www.univie.ac.at
http://www.nature.com/nature/journal/v478/n7367/full/nature10461.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise