Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserlicht kühlt nanomechanisches Objekt in den "Quanten-Grundzustand"

07.10.2011
Forschern am California Institute of Technology und am Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien ist es gelungen, erstmals kleine mechanische Objekte mithilfe von Laserlicht in ihren kleinstmöglichen Energiezustand zu kühlen.

Dies eröffnet neue Möglichkeiten sowohl für Anwendungen – etwa im Bereich extrem empfindlicher Sensoren – als auch für grundlegende Fragestellungen im Grenzbereich zwischen der Welt der Quantenphänomene und unserer Alltagswelt. Die Forschungsergebnisse werden in der aktuellen Ausgabe der Fachzeitschrift "Nature" publiziert.


Elektromikroskopische Aufnahme der von den Forschern verwendeten winzigen mechanischen Brücke aus Silizium. (Bild: Caltech/Painter et al.)

Nur etwa ein tausendstel Millimeter breit und mehrere hundertstel Millimeter lang sind die mechanisch schwingenden Objekte, die das internationale Forschungsteam verwendet hat. Dabei handelt es sich um winzige mechanische Brücken aus Silizium. In diese wird Laserlicht einer bestimmten Frequenz eingebracht und – sobald es reflektiert wird – Wärmeenergie abtransportiert, wodurch das System gekühlt wird. "Wir haben ein mechanisches Objekt verwendet, das aus Milliarden von Atomen besteht, und dieses mit Laserlicht in einen Zustand versetzt, in dem es sich nach den Regeln der Quantenphysik verhält. Bislang ist das nur mit einzelnen Atomen oder Ionen gelungen", erklärt Oskar Painter, Professor für angewandte Physik am California Institute of Technology (Caltech) und Leiter des Forschungsprojekts.

Dieses Kühlverfahren wurde 2006 von Wissenschaftern um Markus Aspelmeyer, Professor für Quantum Information on the Nanoscale an der Universität Wien, an mikroskopischen Sprungbrettern gezeigt. Die damals erreichten Temperaturen waren aber noch weit vom Quantenregime entfernt. Ein am Caltech entwickeltes Design der mechanischen Siliziumbrücken ermöglichte es den Forschern nun, diese Laser-Kühltechniken zu verwenden, um das System in den "Quanten-Grundzustand" zu bringen. "In diesem Zustand sind mechanische Schwingungen auf ein absolutes Minimum reduziert; die verbleibende sogenannte 'Nullpunkts-Schwingung' kann nur durch die Quantenphysik erklärt werden", so Aspelmeyer.

Phononen aus dem System entfernt

Um zu zeigen, ob die bizarren Gesetze der Quantenphysik auch für massive Objekte wie mikromechanische Brücken gelten, etwa dass sich ein Objekt so verhält als wäre es an zwei Orten gleichzeitig, muss sich das mechanische Objekt dafür zunächst sehr nahe am "Quanten-Grundzustand" befinden. Dafür mussten die Physiker die mechanische Brücke auf eine Temperatur unterhalb eines Zehntels eines Kelvins (-273,15°C) kühlen. Da die Frequenz der mechanischen Schwingung einige Gigahertz beträgt, das entspricht mehreren Milliarden Schwingungen pro Sekunde, ist bei Zimmertemperatur noch eine große Anzahl von Phononen vorhanden. Phononen sind die Quanten der mechanischen Schwingung – genauso wie die Photonen die Quanten des Lichts sind. "Um die Bewegung eines mechanischen Objekts in den 'Quanten-Grundzustand' zu kühlen, müssen daher alle Phononen der Bewegung entfernt werden", sagt Simon Gröblacher, Co-Autor der Studie.

Alternative Kühlstrategie

Zwar existieren bereits konventionelle Kühlmethoden, um derartig niedrige Temperaturen zu erreichen; diese sind aber sehr kostspielig und bergen Probleme bei der Messung des kalten mechanischen Objekts. Die Forscher wählten daher eine andere Kühlstrategie: "Wir haben die Photonen – das Lichtfeld – verwendet, um die Phononen aus dem System herauszubekommen", so Jasper Chan, Erstautor des Papers. Kleine Löcher werden dafür an speziellen Stellen in die mechanische Brücke gebohrt. Wenn Laserlicht einer bestimmten Frequenz entlang der Brücke geführt wird, bilden die Löcher eine Art Spiegel, zwischen denen das Licht reflektiert wird. Dadurch kommt es zu einer starken Wechselwirkung zwischen dem Licht und den mechanischen Vibrationen der Brücke, also zwischen Photonen und Phononen.

Das aus der "Spiegel"-Anordnung entweichende Licht trägt aufgrund dieser Wechselwirkung neben der Energie der Phononen auch Information über das mechanische Objekt nach außen, etwa dessen Bewegung und Temperatur. Auf diese Weise schaffen die Forscher eine effiziente optische Schnittstelle zu einem mechanischen Element. Dieser "optische Signalwandler" tauscht Informationen eines mechanischen Systems in Photonen um und könnte sich als äußerst hilfreich bei der Verknüpfung verschiedener Quantensysteme erweisen – beispielsweise zwischen optischen und Mikrowellen-Systemen.

Meilenstein – und doch erst am Anfang

Das Team von Caltech und der Universität Wien/VCQ ist zwar nicht das erste, das nanomechanische Objekte in den Grundzustand kühlt: eine Gruppe rund um Andrew Cleland und John Martinis an der University of California in Santa Barbara hat dies bereits 2010 mittels konventioneller Kühltechniken geschafft, und in diesem Jahr konnte eine Gruppe um John Teufel vom National Institute of Standards and Technology in Boulder, Colorado, ein mikromechanisches Objekt mittels Mikrowellenstrahlung in den Grundzustand kühlen. Die jetzige Arbeit ist jedoch die erste, die Laserlicht verwendet, um ein nanomechanisches Objekt in den Grundzustand zu kühlen.

"Die angewandte Methode, nanomechanische Objekte in den Grundzustand zu kühlen, ist ein Meilenstein, weil es so viele etablierte Verfahren zur Manipulation und Messung von Quanteneigenschaften mit Hilfe von Laserlicht gibt", sagt Painter. Durch die Laserkühlung können Experimente bei weit höheren Temperaturen durchgeführt werden und den Grundzustand bei einer Anfangstemperatur erreichen, die nur etwa zehn Mal kühler als die Raumtemperatur ist.

"Die derzeitigen Entwicklungen auf dem Gebiet der Quantenphysik mit massiven mechanischen Objekten sind atemberaubend", konstatiert Markus Aspelmeyer. "Durch die Kooperation von Forschern am Caltech mit Kollegen an der Universität Wien generieren wir einen einzigartigen Mix an Know-how: völlig neue nanomechanische Strukturen kombiniert mit den Werkzeugen der Quantenoptik und mit spannenden Fragen der Quantenphysik. Dabei sind wir mit der Erforschung dieser Quantensysteme erst am Anfang."

Publikation
Laser cooling of a nanomechanical oscillator into its quantum ground state
Jasper Chan, T. P. Mayer Alegre, Amir H. Safavi-Naeini, Jeff T. Hill, Alex Krause, Simon Gröblacher, Markus Aspelmeyer, Oskar Painter. In: Nature 478, 89–92 (2011).
DOI: 10.1038/nature10461
Volltext: http://www.nature.com/nature/journal/v478/n7367/full/nature10461.html
Wissenschaftlicher Kontakt
Mag. Simon Gröblacher
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Boltzmanngasse 3
T +43-1-4277-295 57
simon.groeblacher@univie.ac.at
Rückfragehinweis
Mag. Alexandra Seiringer
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 31
alexandra.seiringer@univie.ac.at

Alexander Dworzak | Universität Wien
Weitere Informationen:
http://www.univie.ac.at
http://www.nature.com/nature/journal/v478/n7367/full/nature10461.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics