Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserlicht kühlt nanomechanisches Objekt in den "Quanten-Grundzustand"

07.10.2011
Forschern am California Institute of Technology und am Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien ist es gelungen, erstmals kleine mechanische Objekte mithilfe von Laserlicht in ihren kleinstmöglichen Energiezustand zu kühlen.

Dies eröffnet neue Möglichkeiten sowohl für Anwendungen – etwa im Bereich extrem empfindlicher Sensoren – als auch für grundlegende Fragestellungen im Grenzbereich zwischen der Welt der Quantenphänomene und unserer Alltagswelt. Die Forschungsergebnisse werden in der aktuellen Ausgabe der Fachzeitschrift "Nature" publiziert.


Elektromikroskopische Aufnahme der von den Forschern verwendeten winzigen mechanischen Brücke aus Silizium. (Bild: Caltech/Painter et al.)

Nur etwa ein tausendstel Millimeter breit und mehrere hundertstel Millimeter lang sind die mechanisch schwingenden Objekte, die das internationale Forschungsteam verwendet hat. Dabei handelt es sich um winzige mechanische Brücken aus Silizium. In diese wird Laserlicht einer bestimmten Frequenz eingebracht und – sobald es reflektiert wird – Wärmeenergie abtransportiert, wodurch das System gekühlt wird. "Wir haben ein mechanisches Objekt verwendet, das aus Milliarden von Atomen besteht, und dieses mit Laserlicht in einen Zustand versetzt, in dem es sich nach den Regeln der Quantenphysik verhält. Bislang ist das nur mit einzelnen Atomen oder Ionen gelungen", erklärt Oskar Painter, Professor für angewandte Physik am California Institute of Technology (Caltech) und Leiter des Forschungsprojekts.

Dieses Kühlverfahren wurde 2006 von Wissenschaftern um Markus Aspelmeyer, Professor für Quantum Information on the Nanoscale an der Universität Wien, an mikroskopischen Sprungbrettern gezeigt. Die damals erreichten Temperaturen waren aber noch weit vom Quantenregime entfernt. Ein am Caltech entwickeltes Design der mechanischen Siliziumbrücken ermöglichte es den Forschern nun, diese Laser-Kühltechniken zu verwenden, um das System in den "Quanten-Grundzustand" zu bringen. "In diesem Zustand sind mechanische Schwingungen auf ein absolutes Minimum reduziert; die verbleibende sogenannte 'Nullpunkts-Schwingung' kann nur durch die Quantenphysik erklärt werden", so Aspelmeyer.

Phononen aus dem System entfernt

Um zu zeigen, ob die bizarren Gesetze der Quantenphysik auch für massive Objekte wie mikromechanische Brücken gelten, etwa dass sich ein Objekt so verhält als wäre es an zwei Orten gleichzeitig, muss sich das mechanische Objekt dafür zunächst sehr nahe am "Quanten-Grundzustand" befinden. Dafür mussten die Physiker die mechanische Brücke auf eine Temperatur unterhalb eines Zehntels eines Kelvins (-273,15°C) kühlen. Da die Frequenz der mechanischen Schwingung einige Gigahertz beträgt, das entspricht mehreren Milliarden Schwingungen pro Sekunde, ist bei Zimmertemperatur noch eine große Anzahl von Phononen vorhanden. Phononen sind die Quanten der mechanischen Schwingung – genauso wie die Photonen die Quanten des Lichts sind. "Um die Bewegung eines mechanischen Objekts in den 'Quanten-Grundzustand' zu kühlen, müssen daher alle Phononen der Bewegung entfernt werden", sagt Simon Gröblacher, Co-Autor der Studie.

Alternative Kühlstrategie

Zwar existieren bereits konventionelle Kühlmethoden, um derartig niedrige Temperaturen zu erreichen; diese sind aber sehr kostspielig und bergen Probleme bei der Messung des kalten mechanischen Objekts. Die Forscher wählten daher eine andere Kühlstrategie: "Wir haben die Photonen – das Lichtfeld – verwendet, um die Phononen aus dem System herauszubekommen", so Jasper Chan, Erstautor des Papers. Kleine Löcher werden dafür an speziellen Stellen in die mechanische Brücke gebohrt. Wenn Laserlicht einer bestimmten Frequenz entlang der Brücke geführt wird, bilden die Löcher eine Art Spiegel, zwischen denen das Licht reflektiert wird. Dadurch kommt es zu einer starken Wechselwirkung zwischen dem Licht und den mechanischen Vibrationen der Brücke, also zwischen Photonen und Phononen.

Das aus der "Spiegel"-Anordnung entweichende Licht trägt aufgrund dieser Wechselwirkung neben der Energie der Phononen auch Information über das mechanische Objekt nach außen, etwa dessen Bewegung und Temperatur. Auf diese Weise schaffen die Forscher eine effiziente optische Schnittstelle zu einem mechanischen Element. Dieser "optische Signalwandler" tauscht Informationen eines mechanischen Systems in Photonen um und könnte sich als äußerst hilfreich bei der Verknüpfung verschiedener Quantensysteme erweisen – beispielsweise zwischen optischen und Mikrowellen-Systemen.

Meilenstein – und doch erst am Anfang

Das Team von Caltech und der Universität Wien/VCQ ist zwar nicht das erste, das nanomechanische Objekte in den Grundzustand kühlt: eine Gruppe rund um Andrew Cleland und John Martinis an der University of California in Santa Barbara hat dies bereits 2010 mittels konventioneller Kühltechniken geschafft, und in diesem Jahr konnte eine Gruppe um John Teufel vom National Institute of Standards and Technology in Boulder, Colorado, ein mikromechanisches Objekt mittels Mikrowellenstrahlung in den Grundzustand kühlen. Die jetzige Arbeit ist jedoch die erste, die Laserlicht verwendet, um ein nanomechanisches Objekt in den Grundzustand zu kühlen.

"Die angewandte Methode, nanomechanische Objekte in den Grundzustand zu kühlen, ist ein Meilenstein, weil es so viele etablierte Verfahren zur Manipulation und Messung von Quanteneigenschaften mit Hilfe von Laserlicht gibt", sagt Painter. Durch die Laserkühlung können Experimente bei weit höheren Temperaturen durchgeführt werden und den Grundzustand bei einer Anfangstemperatur erreichen, die nur etwa zehn Mal kühler als die Raumtemperatur ist.

"Die derzeitigen Entwicklungen auf dem Gebiet der Quantenphysik mit massiven mechanischen Objekten sind atemberaubend", konstatiert Markus Aspelmeyer. "Durch die Kooperation von Forschern am Caltech mit Kollegen an der Universität Wien generieren wir einen einzigartigen Mix an Know-how: völlig neue nanomechanische Strukturen kombiniert mit den Werkzeugen der Quantenoptik und mit spannenden Fragen der Quantenphysik. Dabei sind wir mit der Erforschung dieser Quantensysteme erst am Anfang."

Publikation
Laser cooling of a nanomechanical oscillator into its quantum ground state
Jasper Chan, T. P. Mayer Alegre, Amir H. Safavi-Naeini, Jeff T. Hill, Alex Krause, Simon Gröblacher, Markus Aspelmeyer, Oskar Painter. In: Nature 478, 89–92 (2011).
DOI: 10.1038/nature10461
Volltext: http://www.nature.com/nature/journal/v478/n7367/full/nature10461.html
Wissenschaftlicher Kontakt
Mag. Simon Gröblacher
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Boltzmanngasse 3
T +43-1-4277-295 57
simon.groeblacher@univie.ac.at
Rückfragehinweis
Mag. Alexandra Seiringer
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 31
alexandra.seiringer@univie.ac.at

Alexander Dworzak | Universität Wien
Weitere Informationen:
http://www.univie.ac.at
http://www.nature.com/nature/journal/v478/n7367/full/nature10461.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quanten-Boten kommunizieren doppelt so schnell
22.02.2018 | Österreichische Akademie der Wissenschaften

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Biomasseforscher nehmen Versuchsanlage zur Weiterentwicklung der Biomassevergasung in Betrieb

22.02.2018 | Energie und Elektrotechnik

Leuchtende Nanoarchitekturen aus Galliumarsenid

22.02.2018 | Energie und Elektrotechnik

Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast

22.02.2018 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics