Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser-Metronom ermöglicht Rekord-Synchronisation

12.01.2017

Mit einem hochpräzisen Laser-Metronom haben Forscher bei DESY erstmals ein kilometergroßes Netzwerk mit einer Genauigkeit im Attosekunden-Bereich synchronisiert. Ein optischer Taktgeber ermöglichte in einem 4,7 Kilometer großen Testnetzwerk für Laser- und Mikrowellen-Signale eine über mehrere Stunden stabile Synchronisation auf 950 Attosekunden genau, wie das Team um DESY-Forscher Prof. Franz X. Kärtner im Fachblatt „Light: Science & Applications“ berichtet. Damit war das Timing etwas besser als auf ein Milliardstel einer millionstel Sekunde. So ein hochpräziser Takt ermöglicht exakte Serien von Röntgen-Schnappschüssen ultraschneller dynamischer Prozesse in der Welt der Atome und Moleküle.

„Für viele Forschungsfelder ist eine extrem hohe Zeitgenauigkeit von Bedeutung“, betont Kemal Şafak, einer der Hauptautoren und Doktorand in Kärtners Gruppe am Center for Free-Electron Laser Science (CFEL) in Hamburg.


Modengekoppelte Laser können extrem genaue sogenannte optische Puls-Züge erzeugen, die sich als hochpräzise Taktgeber eignen.

Bild: DESY/Polina Şafak


Blick auf einen Teil des Laser-Aufbaus im Labor.

Bild: DESY/Kemal Şafak

„Beispielsweise erfordern manche Geodäsie-Aufgaben eine Signal-Synchronisation mit Pikosekunden-Genauigkeit, das ist eine billionstel Sekunde. Hochpräzise Satellitennavigation benötigt eine noch höhere Präzision von bis zu 40 Femtosekunden, genau wie etwa der Zusammenschluss mehrerer Teleskope in der Astronomie.“ Eine Femtosekunde ist eine billiardstel Sekunde, das entspricht 1000 Attosekunden (trillionstel Sekunden).

Mit sogenannten Freie-Elektronen-Röntgenlasern (X-ray Free-Electron Lasers, XFEL) wie dem European XFEL, der in diesem Jahr in Betrieb geht und dessen Hauptgesellschafter DESY ist, möchten Forscher extrem schnelle Prozesse im Nanokosmos beobachten, etwa wie Biomoleküle ihre Struktur ändern oder wie chemische Reaktionen im Detail ablaufen.

„Röntgenlicht ermöglicht eine exzellente räumliche Auflösung auf atomarem Maßstab“, erläutert Şafak. „Die Herausforderung liegt darin, die nötige Zeitauflösung im Attosekundenbereich zu erreichen, in dem sich wichtige molekulare und atomare Prozesse abspielen.“

DESYs Pionier-Röntgenlaser FLASH erreicht bereits eine anlagenweite Synchronisation mit einer beeindruckenden Präzision von 30 Femtosekunden. Das ermöglicht etwa sehr exakt gesteuerte sogenannte Pump-Probe-Experimente, bei denen ein dynamischer Prozess – beispielsweise eine chemische Reaktion – von einem Laserpuls gestartet wird (Pump) und mit einem zweiten, präzise verzögerten Laserpuls untersucht wird (Probe).

Wiederholt man dieses Experiment viele Male mit steigender Verzögerung zwischen den beiden Pulsen, ergibt sich eine Serie von Schnappschüssen, die den zeitlichen Verlauf der untersuchten Reaktion zeigt und sich zu einem Superzeitlupenfilm kombinieren lässt. Ohne präzise Synchronisation zwischen den Pulsen ließe sich die Dynamik nicht klar auflösen.

„Wenn wir eine noch höhere Präzision erreichen können, verspräche dies komplett neue wissenschaftliche Einblicke in molekulare und atomare Prozesse, die auf der Attosekunden-Zeitskala stattfinden“, erläutert DESY-Forscher Kärtner, der auch Professor an der Universität Hamburg ist und eine Forschungsgruppe am Massachusetts Institute of Technology (MIT) leitet, wo er vor mehr als zehn Jahren begonnen hat, an hochpräzisen Taktgeber-Systemen zu arbeiten. „Es wird erwartet, dass dies viele Forschungsfelder revolutionieren wird, von der Strukturbiologie über die Materialforschung und Chemie bis zur physikalischen Grundlagenforschung.“

„Anlagen wie Röntgenlaser oder Atto-Forschungszentren benötigen eine systemweite Synchronisierung von Dutzenden optischen und Mikrowellensignalen mit Attosekunden-Genauigkeit, oft über kilometerlange Distanzen,“ betont Kärtner. Zu diesem Zweck haben die Forscher ein optisches Synchronisationssystem entwickelt, das die extrem rauscharmen Puls-Züge sogenannter modengekoppelter Laser als Takt nutzt. Mit Hilfe speziell stabilisierter Glasfaserverbindungen konnten sie das Taktsignal über lange Strecken von einem zentralen Zeitgeber zu zahlreichen Stationen übertragen, wo sich auf diese Weise eine robuste Synchronisation mit entfernten optischen und Mikrowellenquellen erreichen ließ.

Durch die Entwicklung spezieller Detektoren, durch die gezielte Unterdrückung von Nichtlinearitäten in den Glasfasern sowie mit Hilfe neuer Techniken zur Rauschminimierung haben die Forscher schließlich im Labor eine über 18 Stunden stabile Takt-Präzision von 950 Attosekunden in einem 4,7 Kilometer langen Laser-Mikrowellen-Netzwerk gemessen. „Nach unserem Wissen ist es das erste Mal, dass eine Synchronisation mit einer besseren Genauigkeit als eine Femtosekunde zwischen räumlich entfernten modengekoppelten Lasern und Mikrowellenoszillatoren auf dem Maßstab einer kompletten Anlage für längere Zeit erreicht wurde“, sagt Şafak.

„Das Laser-Mikrowellen-Netzwerk mit Attosekunden-Präzision wird den Röntgenlasern der nächsten Generation und anderen Forschungsanlagen eine bis dato unerreichte zeitliche Genauigkeit ermöglichen, so dass sie ihr volles Potenzial entfalten können“, unterstreicht Kärtner. „Das wird die wissenschaftlichen Bemühungen vorantreiben, molekulare Filme auf der Attosekunden-Skala aufzunehmen, und damit viele neue Einblicke in Biologie, Arzneimittelentwicklung, Chemie, Grundlagenphysik und Materialforschung eröffnen. Daneben wird erwartet, dass diese Technik auch in vielen anderen Bereichen an der Forschungsfront Verwendung findet, die auf eine hohe Zeitauflösung angewiesen sind – etwa beim Vergleich ultrastabiler Atomuhren, in der Gravitationswellenastronomie oder zur Zusammenschaltung kohärenter optischer Antennenfelder.“

Die Experimente haben in den Laserlaboren des Centers for Free-Electron Laser Science (CFEL) in Hamburg stattgefunden. Das CFEL ist eine Kooperation von DESY, Universität Hamburg und der Max-Planck-Gesellschaft. An der Arbeit waren Forscher von DESY, der Universität Hamburg und vom MIT beteiligt.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

###

Originalveröffentlichung
Attosecond precision multi-kilometer laser-microwave network; Ming Xin, Kemal Şafak, Michael Y. Peng, Aram Kalaydzhyan, Wenting Wang, Oliver D. Mücke, and Franz X. Kärtner
„Light: Science & Applications”, 2017; DOI: 10.1038/lsa.2016.187

Weitere Informationen:

http://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=1156&... - Pressemitteilung und Bildmaterial
http://aap.nature-lsa.cn:8080/cms/accessory/files/AAP-lsa2016187.pdf - Originalveröffentlichung (pdf)

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blasen im Pulsarwind schlagen Funken
22.11.2017 | Max-Planck-Institut für Kernphysik

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften