Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ladungsstau in der Solarzelle

24.09.2014

Mainzer Polymerforscher entschlüsseln die Arbeitsweise neuartiger Perowskit-Solarzellen.

Forscher des Max-Planck-Instituts für Polymerforschung in Mainz haben gemeinsam mit Wissenschaftlern aus der Schweiz und aus Spanien die Wirkungsweise eines neuartigen Typs von Solarzellen untersucht, bei denen eine organisch-anorganische Perowskit-Verbindung die lichtabsorbierende Schicht bildet.


Schema der Funktionsweise einer Perowskitsolarzelle.

S. Weber


Rüdiger Berger (links) und Stefan Weber (rechts) beim Vermessen einer Solarzelle.

Foto: N. Bouvier

Diese Zellen können mit einfachsten Mitteln kostengünstig hergestellt werden. Im Vergleich dazu sind etablierte Solarzellen aus Silizium in der Herstellung energieaufwändig und teuer. Mittels Kelvinsondenmikroskopie beobachteten die Mainzer Forscher um Dr. Rüdiger Berger und Dr. Stefan Weber den Ladungstransport in einer beleuchteten Solarzelle.

Dabei stellten sie fest, dass sich an einer bestimmten Stelle in der Solarzelle die positiv geladenen Ladungsträger stauen, ähnlich wie an einer Engstelle auf der Autobahn. Wollen viele Autos auf einmal daran vorbei fließen, wird der Verkehr unweigerlich langsamer oder gerät ins Stocken. Durch diese Erkenntnisse könnten Perowskitsolarzellen bald schon Effizienzen erreichen, die mit denen handelsüblicher Solarzellen vergleichbar sind. Die Mainzer haben ihre Ergebnisse nun in der Fachzeitschrift Nature Communications veröffentlicht.

Die Perowskit-Solarzellen aus dem Labor der Schweizer Wissenschaftler um Prof. Dr. Michael Grätzel besitzen in der Mitte eine Schicht einer organisch-anorganischen Verbindung, die in der kubischen Perowskit-Struktur kristallisiert. „Diese Strukturen absorbieren sehr gut Licht“, erklärt Rüdiger Berger die Funktionsweise der Solarzelle. „Das von der Perowskitschicht absorbierte Licht entreißt einem Atom ein Elektron; zurück bleibt eine positiv geladene Fehlstelle, die wir auch „Loch“ nennen.

Jetzt müssen wir nur noch die Elektronen zur einen und die Löcher zur anderen Elektrode bringen und fertig ist die Solarzelle.“ In der Solarzelle sitzt der Perowskit-Film daher auf einer nanostrukturierten Schicht aus Titandioxid, das die unter Beleuchtung erzeugten Elektronen einsammelt und zur unteren Elektrode leitet. Auf der Oberseite des Perowskits befindet sich eine Schicht aus einem organischen Lochleiter, der die Löcher zur oberen Elektrode transportiert.

„Die vielen unterschiedlichen Schichten in der Solarzelle sind extrem wichtig. Sie stellen die effiziente Trennung zwischen den beiden Ladungsträgern sicher“, ergänzt Bergers Kollege Stefan Weber. „Allerdings müssen die Ladungsträger jedes Mal, wenn sie von einem Material ins andere übergehen, eine kleine Barriere überwinden. Diese Barrieren wirken wie eine Baustelle auf einer stark befahrenen Autobahn, an der sich die Fahrzeuge zurückstauen. Dieser Ladungsstau in der Solarzelle führt zu Verlusten und damit zu einer niedrigeren Effizienz.“

Um den Ladungstransport innerhalb der Solarzelle zu beobachten, haben die Mainzer Wissenschaftler die Zelle in der Mitte durchgebrochen und die Bruchstelle mit einem fein fokussierten Ionenstrahl glatt poliert. Mit der feinen Spitze eines Rasterkraftmikroskops konnten sie die Schichtstruktur mit einer Auflösung von wenigen Nanometern abbilden.

Zusätzlich verwendeten sie die Kelvinsondenmikroskopie, die gleichzeitig mit der Messung der Oberflächenstruktur das elektrische Potential unter der Spitze abtastet. Aus der Potentialverteilung konnten die Forscher dann Rückschlüsse auf die Feldverteilung und damit den Ladungstransport durch die verschiedenen Schichten der Zelle ziehen.

In mehreren Messreihen stellten die Forscher fest, dass sich die lichtabsorbierende Perowskitschicht unter Beleuchtung stark positiv auflädt. Als Grund vermuten sie, dass der Elektronenleiter Titandioxid seine Aufgabe deutlich wirkungsvoller als der Lochleiter erledigt. Die Löcher erreichen ihre Elektrode nicht so schnell wie die Elektronen, sie stauen sich auf dem Weg. Durch den Überschuss an positiven Ladungen in der Perowskit-Schicht baut sich ein Gegenfeld auf, das den Transport der Löcher zusätzlich bremst.

„Wir konnten die Ladungsverteilung innerhalb der Zelle erstmals in genauen Zusammenhang mit den einzelnen Schichten bringen“, sagt Rüdiger Berger. „Der Ladungsstau der positiven Ladungen in der Perowskitschicht beim Einschalten des Lichts sagt uns, dass der Transport durch den Lochleiter derzeit den Flaschenhals für die Effizienz der Solarzelle darstellt.“ Die Beobachtungen der Mainzer Forscher können helfen, die Wirkungsgrade der Perowskit-Solarzellen auf über 20% zu erhöhen, womit sie dann eine echte Konkurrenz zu den etablierten Silizium-Solarzellen darstellen würden.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/4054981/PM9_14 - Pressemiteilung und Originalpublikation
http://www.mpip-mainz.mpg.de - das Max-Planck-Institut für Polymerforschung

Natacha Bouvier | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics