Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ladungsstau in der Solarzelle

24.09.2014

Mainzer Polymerforscher entschlüsseln die Arbeitsweise neuartiger Perowskit-Solarzellen.

Forscher des Max-Planck-Instituts für Polymerforschung in Mainz haben gemeinsam mit Wissenschaftlern aus der Schweiz und aus Spanien die Wirkungsweise eines neuartigen Typs von Solarzellen untersucht, bei denen eine organisch-anorganische Perowskit-Verbindung die lichtabsorbierende Schicht bildet.


Schema der Funktionsweise einer Perowskitsolarzelle.

S. Weber


Rüdiger Berger (links) und Stefan Weber (rechts) beim Vermessen einer Solarzelle.

Foto: N. Bouvier

Diese Zellen können mit einfachsten Mitteln kostengünstig hergestellt werden. Im Vergleich dazu sind etablierte Solarzellen aus Silizium in der Herstellung energieaufwändig und teuer. Mittels Kelvinsondenmikroskopie beobachteten die Mainzer Forscher um Dr. Rüdiger Berger und Dr. Stefan Weber den Ladungstransport in einer beleuchteten Solarzelle.

Dabei stellten sie fest, dass sich an einer bestimmten Stelle in der Solarzelle die positiv geladenen Ladungsträger stauen, ähnlich wie an einer Engstelle auf der Autobahn. Wollen viele Autos auf einmal daran vorbei fließen, wird der Verkehr unweigerlich langsamer oder gerät ins Stocken. Durch diese Erkenntnisse könnten Perowskitsolarzellen bald schon Effizienzen erreichen, die mit denen handelsüblicher Solarzellen vergleichbar sind. Die Mainzer haben ihre Ergebnisse nun in der Fachzeitschrift Nature Communications veröffentlicht.

Die Perowskit-Solarzellen aus dem Labor der Schweizer Wissenschaftler um Prof. Dr. Michael Grätzel besitzen in der Mitte eine Schicht einer organisch-anorganischen Verbindung, die in der kubischen Perowskit-Struktur kristallisiert. „Diese Strukturen absorbieren sehr gut Licht“, erklärt Rüdiger Berger die Funktionsweise der Solarzelle. „Das von der Perowskitschicht absorbierte Licht entreißt einem Atom ein Elektron; zurück bleibt eine positiv geladene Fehlstelle, die wir auch „Loch“ nennen.

Jetzt müssen wir nur noch die Elektronen zur einen und die Löcher zur anderen Elektrode bringen und fertig ist die Solarzelle.“ In der Solarzelle sitzt der Perowskit-Film daher auf einer nanostrukturierten Schicht aus Titandioxid, das die unter Beleuchtung erzeugten Elektronen einsammelt und zur unteren Elektrode leitet. Auf der Oberseite des Perowskits befindet sich eine Schicht aus einem organischen Lochleiter, der die Löcher zur oberen Elektrode transportiert.

„Die vielen unterschiedlichen Schichten in der Solarzelle sind extrem wichtig. Sie stellen die effiziente Trennung zwischen den beiden Ladungsträgern sicher“, ergänzt Bergers Kollege Stefan Weber. „Allerdings müssen die Ladungsträger jedes Mal, wenn sie von einem Material ins andere übergehen, eine kleine Barriere überwinden. Diese Barrieren wirken wie eine Baustelle auf einer stark befahrenen Autobahn, an der sich die Fahrzeuge zurückstauen. Dieser Ladungsstau in der Solarzelle führt zu Verlusten und damit zu einer niedrigeren Effizienz.“

Um den Ladungstransport innerhalb der Solarzelle zu beobachten, haben die Mainzer Wissenschaftler die Zelle in der Mitte durchgebrochen und die Bruchstelle mit einem fein fokussierten Ionenstrahl glatt poliert. Mit der feinen Spitze eines Rasterkraftmikroskops konnten sie die Schichtstruktur mit einer Auflösung von wenigen Nanometern abbilden.

Zusätzlich verwendeten sie die Kelvinsondenmikroskopie, die gleichzeitig mit der Messung der Oberflächenstruktur das elektrische Potential unter der Spitze abtastet. Aus der Potentialverteilung konnten die Forscher dann Rückschlüsse auf die Feldverteilung und damit den Ladungstransport durch die verschiedenen Schichten der Zelle ziehen.

In mehreren Messreihen stellten die Forscher fest, dass sich die lichtabsorbierende Perowskitschicht unter Beleuchtung stark positiv auflädt. Als Grund vermuten sie, dass der Elektronenleiter Titandioxid seine Aufgabe deutlich wirkungsvoller als der Lochleiter erledigt. Die Löcher erreichen ihre Elektrode nicht so schnell wie die Elektronen, sie stauen sich auf dem Weg. Durch den Überschuss an positiven Ladungen in der Perowskit-Schicht baut sich ein Gegenfeld auf, das den Transport der Löcher zusätzlich bremst.

„Wir konnten die Ladungsverteilung innerhalb der Zelle erstmals in genauen Zusammenhang mit den einzelnen Schichten bringen“, sagt Rüdiger Berger. „Der Ladungsstau der positiven Ladungen in der Perowskitschicht beim Einschalten des Lichts sagt uns, dass der Transport durch den Lochleiter derzeit den Flaschenhals für die Effizienz der Solarzelle darstellt.“ Die Beobachtungen der Mainzer Forscher können helfen, die Wirkungsgrade der Perowskit-Solarzellen auf über 20% zu erhöhen, womit sie dann eine echte Konkurrenz zu den etablierten Silizium-Solarzellen darstellen würden.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/4054981/PM9_14 - Pressemiteilung und Originalpublikation
http://www.mpip-mainz.mpg.de - das Max-Planck-Institut für Polymerforschung

Natacha Bouvier | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics