Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ladungsstau in der Solarzelle

24.09.2014

Mainzer Polymerforscher entschlüsseln die Arbeitsweise neuartiger Perowskit-Solarzellen.

Forscher des Max-Planck-Instituts für Polymerforschung in Mainz haben gemeinsam mit Wissenschaftlern aus der Schweiz und aus Spanien die Wirkungsweise eines neuartigen Typs von Solarzellen untersucht, bei denen eine organisch-anorganische Perowskit-Verbindung die lichtabsorbierende Schicht bildet.


Schema der Funktionsweise einer Perowskitsolarzelle.

S. Weber


Rüdiger Berger (links) und Stefan Weber (rechts) beim Vermessen einer Solarzelle.

Foto: N. Bouvier

Diese Zellen können mit einfachsten Mitteln kostengünstig hergestellt werden. Im Vergleich dazu sind etablierte Solarzellen aus Silizium in der Herstellung energieaufwändig und teuer. Mittels Kelvinsondenmikroskopie beobachteten die Mainzer Forscher um Dr. Rüdiger Berger und Dr. Stefan Weber den Ladungstransport in einer beleuchteten Solarzelle.

Dabei stellten sie fest, dass sich an einer bestimmten Stelle in der Solarzelle die positiv geladenen Ladungsträger stauen, ähnlich wie an einer Engstelle auf der Autobahn. Wollen viele Autos auf einmal daran vorbei fließen, wird der Verkehr unweigerlich langsamer oder gerät ins Stocken. Durch diese Erkenntnisse könnten Perowskitsolarzellen bald schon Effizienzen erreichen, die mit denen handelsüblicher Solarzellen vergleichbar sind. Die Mainzer haben ihre Ergebnisse nun in der Fachzeitschrift Nature Communications veröffentlicht.

Die Perowskit-Solarzellen aus dem Labor der Schweizer Wissenschaftler um Prof. Dr. Michael Grätzel besitzen in der Mitte eine Schicht einer organisch-anorganischen Verbindung, die in der kubischen Perowskit-Struktur kristallisiert. „Diese Strukturen absorbieren sehr gut Licht“, erklärt Rüdiger Berger die Funktionsweise der Solarzelle. „Das von der Perowskitschicht absorbierte Licht entreißt einem Atom ein Elektron; zurück bleibt eine positiv geladene Fehlstelle, die wir auch „Loch“ nennen.

Jetzt müssen wir nur noch die Elektronen zur einen und die Löcher zur anderen Elektrode bringen und fertig ist die Solarzelle.“ In der Solarzelle sitzt der Perowskit-Film daher auf einer nanostrukturierten Schicht aus Titandioxid, das die unter Beleuchtung erzeugten Elektronen einsammelt und zur unteren Elektrode leitet. Auf der Oberseite des Perowskits befindet sich eine Schicht aus einem organischen Lochleiter, der die Löcher zur oberen Elektrode transportiert.

„Die vielen unterschiedlichen Schichten in der Solarzelle sind extrem wichtig. Sie stellen die effiziente Trennung zwischen den beiden Ladungsträgern sicher“, ergänzt Bergers Kollege Stefan Weber. „Allerdings müssen die Ladungsträger jedes Mal, wenn sie von einem Material ins andere übergehen, eine kleine Barriere überwinden. Diese Barrieren wirken wie eine Baustelle auf einer stark befahrenen Autobahn, an der sich die Fahrzeuge zurückstauen. Dieser Ladungsstau in der Solarzelle führt zu Verlusten und damit zu einer niedrigeren Effizienz.“

Um den Ladungstransport innerhalb der Solarzelle zu beobachten, haben die Mainzer Wissenschaftler die Zelle in der Mitte durchgebrochen und die Bruchstelle mit einem fein fokussierten Ionenstrahl glatt poliert. Mit der feinen Spitze eines Rasterkraftmikroskops konnten sie die Schichtstruktur mit einer Auflösung von wenigen Nanometern abbilden.

Zusätzlich verwendeten sie die Kelvinsondenmikroskopie, die gleichzeitig mit der Messung der Oberflächenstruktur das elektrische Potential unter der Spitze abtastet. Aus der Potentialverteilung konnten die Forscher dann Rückschlüsse auf die Feldverteilung und damit den Ladungstransport durch die verschiedenen Schichten der Zelle ziehen.

In mehreren Messreihen stellten die Forscher fest, dass sich die lichtabsorbierende Perowskitschicht unter Beleuchtung stark positiv auflädt. Als Grund vermuten sie, dass der Elektronenleiter Titandioxid seine Aufgabe deutlich wirkungsvoller als der Lochleiter erledigt. Die Löcher erreichen ihre Elektrode nicht so schnell wie die Elektronen, sie stauen sich auf dem Weg. Durch den Überschuss an positiven Ladungen in der Perowskit-Schicht baut sich ein Gegenfeld auf, das den Transport der Löcher zusätzlich bremst.

„Wir konnten die Ladungsverteilung innerhalb der Zelle erstmals in genauen Zusammenhang mit den einzelnen Schichten bringen“, sagt Rüdiger Berger. „Der Ladungsstau der positiven Ladungen in der Perowskitschicht beim Einschalten des Lichts sagt uns, dass der Transport durch den Lochleiter derzeit den Flaschenhals für die Effizienz der Solarzelle darstellt.“ Die Beobachtungen der Mainzer Forscher können helfen, die Wirkungsgrade der Perowskit-Solarzellen auf über 20% zu erhöhen, womit sie dann eine echte Konkurrenz zu den etablierten Silizium-Solarzellen darstellen würden.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/4054981/PM9_14 - Pressemiteilung und Originalpublikation
http://www.mpip-mainz.mpg.de - das Max-Planck-Institut für Polymerforschung

Natacha Bouvier | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

nachricht ALMA beginnt Beobachtung der Sonne
18.01.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Auf die richtige Behandlung kommt es an

19.01.2017 | Seminare Workshops

Grundlagen der Akustik, Virtuelle Akustik, Lärmminderung, Fahrzeugakustik, Psychoakustik, Produkt Sound Design und Messtechnik

19.01.2017 | Seminare Workshops

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie