Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ladungsstau in der Solarzelle

24.09.2014

Mainzer Polymerforscher entschlüsseln die Arbeitsweise neuartiger Perowskit-Solarzellen.

Forscher des Max-Planck-Instituts für Polymerforschung in Mainz haben gemeinsam mit Wissenschaftlern aus der Schweiz und aus Spanien die Wirkungsweise eines neuartigen Typs von Solarzellen untersucht, bei denen eine organisch-anorganische Perowskit-Verbindung die lichtabsorbierende Schicht bildet.


Schema der Funktionsweise einer Perowskitsolarzelle.

S. Weber


Rüdiger Berger (links) und Stefan Weber (rechts) beim Vermessen einer Solarzelle.

Foto: N. Bouvier

Diese Zellen können mit einfachsten Mitteln kostengünstig hergestellt werden. Im Vergleich dazu sind etablierte Solarzellen aus Silizium in der Herstellung energieaufwändig und teuer. Mittels Kelvinsondenmikroskopie beobachteten die Mainzer Forscher um Dr. Rüdiger Berger und Dr. Stefan Weber den Ladungstransport in einer beleuchteten Solarzelle.

Dabei stellten sie fest, dass sich an einer bestimmten Stelle in der Solarzelle die positiv geladenen Ladungsträger stauen, ähnlich wie an einer Engstelle auf der Autobahn. Wollen viele Autos auf einmal daran vorbei fließen, wird der Verkehr unweigerlich langsamer oder gerät ins Stocken. Durch diese Erkenntnisse könnten Perowskitsolarzellen bald schon Effizienzen erreichen, die mit denen handelsüblicher Solarzellen vergleichbar sind. Die Mainzer haben ihre Ergebnisse nun in der Fachzeitschrift Nature Communications veröffentlicht.

Die Perowskit-Solarzellen aus dem Labor der Schweizer Wissenschaftler um Prof. Dr. Michael Grätzel besitzen in der Mitte eine Schicht einer organisch-anorganischen Verbindung, die in der kubischen Perowskit-Struktur kristallisiert. „Diese Strukturen absorbieren sehr gut Licht“, erklärt Rüdiger Berger die Funktionsweise der Solarzelle. „Das von der Perowskitschicht absorbierte Licht entreißt einem Atom ein Elektron; zurück bleibt eine positiv geladene Fehlstelle, die wir auch „Loch“ nennen.

Jetzt müssen wir nur noch die Elektronen zur einen und die Löcher zur anderen Elektrode bringen und fertig ist die Solarzelle.“ In der Solarzelle sitzt der Perowskit-Film daher auf einer nanostrukturierten Schicht aus Titandioxid, das die unter Beleuchtung erzeugten Elektronen einsammelt und zur unteren Elektrode leitet. Auf der Oberseite des Perowskits befindet sich eine Schicht aus einem organischen Lochleiter, der die Löcher zur oberen Elektrode transportiert.

„Die vielen unterschiedlichen Schichten in der Solarzelle sind extrem wichtig. Sie stellen die effiziente Trennung zwischen den beiden Ladungsträgern sicher“, ergänzt Bergers Kollege Stefan Weber. „Allerdings müssen die Ladungsträger jedes Mal, wenn sie von einem Material ins andere übergehen, eine kleine Barriere überwinden. Diese Barrieren wirken wie eine Baustelle auf einer stark befahrenen Autobahn, an der sich die Fahrzeuge zurückstauen. Dieser Ladungsstau in der Solarzelle führt zu Verlusten und damit zu einer niedrigeren Effizienz.“

Um den Ladungstransport innerhalb der Solarzelle zu beobachten, haben die Mainzer Wissenschaftler die Zelle in der Mitte durchgebrochen und die Bruchstelle mit einem fein fokussierten Ionenstrahl glatt poliert. Mit der feinen Spitze eines Rasterkraftmikroskops konnten sie die Schichtstruktur mit einer Auflösung von wenigen Nanometern abbilden.

Zusätzlich verwendeten sie die Kelvinsondenmikroskopie, die gleichzeitig mit der Messung der Oberflächenstruktur das elektrische Potential unter der Spitze abtastet. Aus der Potentialverteilung konnten die Forscher dann Rückschlüsse auf die Feldverteilung und damit den Ladungstransport durch die verschiedenen Schichten der Zelle ziehen.

In mehreren Messreihen stellten die Forscher fest, dass sich die lichtabsorbierende Perowskitschicht unter Beleuchtung stark positiv auflädt. Als Grund vermuten sie, dass der Elektronenleiter Titandioxid seine Aufgabe deutlich wirkungsvoller als der Lochleiter erledigt. Die Löcher erreichen ihre Elektrode nicht so schnell wie die Elektronen, sie stauen sich auf dem Weg. Durch den Überschuss an positiven Ladungen in der Perowskit-Schicht baut sich ein Gegenfeld auf, das den Transport der Löcher zusätzlich bremst.

„Wir konnten die Ladungsverteilung innerhalb der Zelle erstmals in genauen Zusammenhang mit den einzelnen Schichten bringen“, sagt Rüdiger Berger. „Der Ladungsstau der positiven Ladungen in der Perowskitschicht beim Einschalten des Lichts sagt uns, dass der Transport durch den Lochleiter derzeit den Flaschenhals für die Effizienz der Solarzelle darstellt.“ Die Beobachtungen der Mainzer Forscher können helfen, die Wirkungsgrade der Perowskit-Solarzellen auf über 20% zu erhöhen, womit sie dann eine echte Konkurrenz zu den etablierten Silizium-Solarzellen darstellen würden.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/4054981/PM9_14 - Pressemiteilung und Originalpublikation
http://www.mpip-mainz.mpg.de - das Max-Planck-Institut für Polymerforschung

Natacha Bouvier | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten