Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Künstliches Atom“ in Graphen-Schicht

22.08.2016

Elektronen offenbaren ihre Quanteneigenschaften, wenn man sie in engen Bereichen gefangen hält. Ein Forschungsteam mit TU Wien-Beteiligung baut Elektronen-Gefängnisse in Graphen.

Wenn man Elektronen in einem engen Gefängnis einsperrt, dann benehmen sie sich ganz anders als im freien Raum. Ähnlich wie die Elektronen in einem Atom können sie dann nur noch ganz bestimmte Energien annehmen – daher bezeichnet man solche winzigen Elektronengefängnisse auch als „künstliche Atome“.


Die elektrisch geladene Spitze eines Rastertunnelmikroskops (oben) und ein zusätzliches Magnetfeld führen zu stabilen, lokalisierten Elektronenzuständen im Graphen.

Nils Freitag, RWTH Aachen

Florian Libisch erklärt die Graphen-Struktur TU Wien

Florian Libisch erklärt die Graphen-Struktur

TU Wien

In vielerlei Hinsicht benehmen sich die Elektronen in künstlichen Atomen genauso wie in echten Atomen. Sie zeigen aber auch zusätzliche Eigenschaften, die häufig für die Anwendung insbesondere in der Quanteninformation besonders interessant sind.

Das wurde nun mit Hilfe einiger technischer Tricks erstmals für künstliche Atome in Graphen gezeigt. Die Ergebnisse wurden im Fachjournal „Nano Letters“ publiziert, neben der TU Wien waren auch die RWTH Aachen und die Universität Manchester beteiligt.

Künstliche Atome bauen

„Künstliche Atome bieten uns neue, spannende Möglichkeiten, weil man ihre Eigenschaften gezielt verändern kann“, erklärt Prof. Joachim Burgdörfer vom Institut für Theoretische Physik. In Halbleitermaterialien wie Galliumarsenid ist es bereits gelungen, Elektronen in winzigen Bereichen kontrolliert einzusperren.

Man spricht in diesem Fall auch von „Quantenpunkten“ bzw. „Quantum Dots“. Ähnlich wie die Elektronen eines Atoms, die auf ganz bestimmten Bahnen um den Atomkern kreisen, können die Elektronen auch in einem solchen Quantenpunkt nur ganz bestimmte Zustände annehmen.

Noch weitaus interessantere Möglichkeiten ergeben sich allerdings bei der Verwendung des in den letzten Jahren berühmt gewordenen Materials Graphen, das aus einer einzigen Schicht sechseckig angeordneter Kohlenstoffatome besteht.

„In den meisten Materialien gibt es für jedes Elektron mit einer bestimmten Energie zwei verschiedene quantenmechanische Zustände – in Graphen sind es durch die geometrische Symmetrie des Materials sogar vier. Das eröffnet potentielle Anwendung in der Quanteninformation, zum Beispiel um Information zu speichern und quantenphysikalisch zu verarbeiten“, erklärt Florian Libisch von der TU Wien. Die Herstellung kontrollierbarer künstlicher Atome in Graphen galt bisher allerdings als besonders schwierig.

Ausschneiden genügt nicht

Es gibt verschiedene Möglichkeiten, ein künstliches Atom zu erzeugen: Die einfachste ist, eine kleine Flocke aus dem Material auszuschneiden und ein Elektron hineinzusetzen. Das funktioniert bei Graphen zwar, allerdings wird dabei die Symmetrie des Materials durch den rauhen Rand der Flocke (der auf atomarer Skala niemals perfekt glatt ist) gestört, sodass die vier Zustände sich auf die gewöhnlichen zwei reduzieren.

Man begab sich also auf die Suche nach anderen Möglichkeiten: Es ist gar nicht nötig, kleine Flocken von Graphen zu benutzen, um die Elektronen in winzigen Bereichen einzusperren. Besser gelingt es durch eine ausgeklügelte Kombination von elektrischen und magnetischen Feldern. Mit der Spitze eines Rastertunnelmikrokops kann man lokal ein elektrisches Feld anlegen.

Dadurch entsteht im Graphen ein winziger Bereich, in dem sich Elektronen mit niedriger Energie aufhalten können. Gleichzeitig zwingt man die Elektronen mit einem zusätzlichen Magnetfeld auf winzige Kreisbahnen. „Würde man nur elektrische Felder verwenden, könnten die Elektronen durch quantenmechanische Effekte problemlos entkommen“ erklärt Libisch.

Nobelpreisträger-Beteiligung

Vermessen wurden die neuartigen künstlichen Atome an der RWTH Aachen von Nils Freitag und Peter Nemes-Incze in der Gruppe von Prof. Markus Morgenstern. Simulationen und theoretische Modelle dazu lieferten Larisa Chizhova, Florian Libisch und Joachim Burgdörfer am Institut für theoretische Physik der TU Wien. Die Graphen-Probe selbst kam vomTeam rund um Andre Geim und Kostya Novoselov – die beiden Forscher wurden 2010 mit dem Nobelpreis ausgezeichnet, nachdem es ihnen erstmals gelungen war, Graphen herzustellen.

Die kontrollierbaren künstlichen Atome im Graphen eröffnen nun eine Spielwiese für viele neue quantentechnologische Experimente: „Die vier lokalisierte Elektronen-Zustände mit gleicher Energie ermöglichen es, zwischen den unterschiedlichen Zuständen hin und her zu schalten und Information zu speichern. “, erklärt Joachim Burgdörfer. Über lange Zeitskalen könnten die Elektronen beliebige Überlagerungen der Zustände beibehalten, ideale Voraussetzungen für so genannte Quantencomputer. Außerdem hat die neue Methode den Vorteil ausgezeichneter Skalierbarkeit: Man könnte auf einem kleinen Chip ohne großen Aufwand eine große Zahl solcher künstlicher Atome herstellen und sie für Quanteninformations-Anwendungen nutzen.


Rückfragehinweis:
Dr. Florian Libisch
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13608
florian.libisch@tuwien.ac.at

Weitere Informationen:

http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b02548 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Berichte zu: Atom Elektron Elektronen Graphen Graphen-Schicht künstliche Atome

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

nachricht Quanten-Übertragung auf Knopfdruck
14.06.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Lasertests unter Tiefsee-Bedingungen am LZH

19.06.2018 | Materialwissenschaften

Neuer Abwehrmechanismus gegen Sauerstoffradikale entdeckt

18.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics