Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmischer Ziegel und Himmlische Schlange - Magnetfelder in dunklen Staubwolken

16.01.2015

Magnetfelder von massereichen dunklen Staubwolken im Kosmos sind stark genug, um zu verhindern, dass diese Wolken durch ihre eigene Schwerkraft kollabieren. Eine Untersuchung unter Leitung von Wissenschaftlern des Bonner Max-Planck-Instituts für Radioastronomie in Bonn konnte zum ersten Mal zeigen, dass die starke Magnetisierung den Weg bereitet für die Entstehung von Sternen mit wesentlich größerer Masse als der der Sonne. Ermöglicht wurde dies durch Beobachtungen der polarisierten Staubstrahlung von zwei der massereichsten Dunkelwolken in unserer Milchstraße, dem so genannten "Brick" (Ziegelstein) und der "Snake" (Schlange).

Die massereichen Sterne im Universum (mit mehr als achtfacher Sonnenmasse) sind durch ein wildes Leben und einen frühen Tod gekennzeichnet. Sie blasen starke Sternwinde ab und enden in gewaltigen Explosionen als Supernovae. Sogar die Geburt dieser Sterne ist ein spektakulärer Prozess: die massereichen Sterne entstehen aus sehr dichten und massereichen Kernen von Gas, die sich tief im Inneren von dunklen interstellaren Wolken aus Gas und Staub befinden.


Kosmische Dunkelwolke "Brick" (Ziegelstein) in der Nähe des Galaktischen Zentrums.

T. Pillai & J. Kauffmann, auf der Grundlage von GLIMPSE- & MIPSGAL-Bildern vom Spitzer-Satelliten (NASA / JPL–Caltech / Univ. of Wisconsin) und dem Hertz–Empfänger am CSO (J. Dotson)


Kosmische Dunkelwolke "Snake" (Schlange) in ca. 8000 Lichtjahren Entfernung.

T. Pillai & J. Kauffmann, auf der Grundlage von GLIMPSE & MIPSGAL Bildern vom Spitzer-Satelliten (NASA / JPL-Caltech / S. Carey [SSC/Caltech]), sowie SCUPOL-Daten vom JCMT (P. Redman / B. Matthews)

Tatsächlich stellten die hohen Werte für die Masse solcher Gaskerne die Forscher schon eine ganze Weile vor ein Rätsel: eigentlich sollten sie sehr schnell aufgrund ihrer eigenen Schwerkraft kollabieren und sich damit selbst zerstören, lange vor der möglichen Entdeckung durch irdische Teleskope.

„Zum ersten Mal werden wir Zeugen, wie Magnetfelder eine massereiche Staubwolke zusammenhalten und stabilisieren, während die Entstehung von massereichen Sternen in der Wolke initiiert wird”, sagt Thushara Pillai vom Bonner Max–Planck–Institut für Radioastronomie (MPIfR), die Erstautorin der Untersuchung. „Die Wolke wäre ohne die Unterstützung des Magnetfelds bereits lange kollabiert“, fügt sie hinzu. „In diesem Fall könnten die Verdichtungen innerhalb der Wolke nie genug Masse anhäufen, um Sterne mit dem Vielfachen der Sonnenmasse zu bilden.“

Es wurde bereits lange vermutet, dass Magnetfelder interstellare Wolken gegen einen Kollaps unterstützen können. Jedoch ist es sehr schwierig, dies direkt durch Beobachtungen zu belegen. Denn Magnetfelder sind schwer fassbar: es ist ausgesprochen schwierig, Rauschen im Empfänger und die schwachen Signale von Magnetfeldern zu unterscheiden.

Jede Himmelsregion muss über eine Reihe von Nächten hinweg beobachtet werden, um schließlich ein signifikantes Signal zu erhalten. Die hier vorgestellte Untersuchung beinhaltet zwei Bereiche am Himmel. Der „Brick“ (Ziegelstein) ist eine Region mit ausgesprochen hoher Dichte, bis weit in mittelinfrarote Wellenlängen hinein ähnlich undurchsichtig wie ihr Namensgeber. Sie ist nur einige Dutzend Lichtjahre entfernt von dem massereichen Schwarzen Loch im Zentrum unserer Milchstraße in etwa 26000 Lichtjahren Entfernung.

Der Spitzname „Snake“ (Schlange) leitet sich hingegen einfach von der Form dieser Dunkelwolke am Himmel ab. Sie ist ca. 12000 Lichtjahre von der Erde entfernt. Das Forschungsteam verwendete Archivdaten von zwei Teleskopen auf dem Mauna Kea (Hawaii, USA) zur Durchführung des Projekts, dem James Clerk Maxwell Telescope und dem Caltech Submillimeter Observatory.

Die Geometrie des Magnetfelds wird durch die Beobachtung von Staubpartikeln bestimmt, die sich anhand der Magnetfeldlinien ausrichten. Die Staubkörner geben polarisierte Radiostrahlung ab, die mit Radioteleskopen beobachtet werden kann. Die Feldlinien werden andauernd gestört von zufälligen Gasbewegungen im Inneren der Wolken.

„Man könnte dabei an den Anschlag einer Gitarrensaite denken“, schlägt Paul Goldsmith vor, ein Mitglied des Forschungsteams vom Jet Propulsion Laboratory am California Institute of Technology in Pasadena (Kalifornien, USA). „Bei einem Saiteninstrument wie zum Beispiel einer Gitarre hält die Spannung der Saite das Ganze gerade. In unseren Wolken geschieht das entsprechend durch die Stärke des Magnetfeldes, das die Feldlinien geradebiegen möchte. Das Ausmaß der Gradlinigkeit der Feldlinien lässt es deshalb zu, die Feldstärke zu bestimmen.“

Eine solche Messung wurde bereits im Jahr 1953 von den beiden berühmten Physikern Chandrasekhar und Fermi vorgeschlagen. Aber erst jetzt sind die Teleskope empfindlich genug geworden, um solche Messungen in Sternentstehungsgebieten der Milchstraße möglich zu machen.

Die vorliegende Untersuchung eröffnet ein neues Kapitel in Forschungsprojekten die in den frühen 1980er Jahren am 100-m-Radioteleskop Effelsberg des MPIfR begannen. Bei den ersten Kartierungen von dichtem Gas im Zentralbereich der Milchstraße wurden bereits ungewöhnlich massereiche Wolken identifiziert, darunter der „Brick“.

Diese Entdeckung führte zu einer Reihe von Folgestudien, wie Ko-Autor Jens Kauffmann vom MPIfR erläutert: „Vor zwei Jahren konnten wir zum ersten Mal die innere Struktur des „Bricks“ analysieren. Wir waren sehr überrascht, dass es nur wenige Unterstrukturen darin gab. Irgendetwas schien das Gas am Zusammenklumpen zu hindern. Heute wissen wir, dass ein starkes Magnetfeld das bewirken könnte.“

Das Forschungsteam hat bereits mit einem Projekt begonnen, in dem eine große Zahl weiterer massereicher Staubwolken dieser Art untersucht wird. Dafür werden sie in Zukunft das APEX-Teleskop des MPIfR in der chilenischen Atacama-Wüste benutzen. „APEX ist zur Zeit das einzige Teleskop weltweit, das die entsprechenden Empfänger zur Durchführung dieser Messungen hat“, schließt Thushara Pillai. „Für mich ist es aufregend, gerade dieses Teleskop zur Untersuchung unseres kosmischen Vorgartens zu nutzen.“

Das Forschungsteam umfasst Thushara Pillai, Jens Kauffmann and Karl M. Menten (alle MPIfR), sowie Jonathan C. Tan (University of Florida), Paul F. Goldsmith (Jet Propulsion Laboratory, California Institute of Technology), und Sean J. Carey (IPAC, California Institute of Technology).

Originalveröffentlichung:

Magnetic Fields in High-mass Infrared Dark Clouds, T. Pillai, J. Kauffmann, J.C. Tan, P.F. Goldsmith, S.J. Carey, K.M. Menten, 2015, Astrophysical Journal Vol. 799.
http://iopscience.iop.org/0004-637X/799/1
http://de.arxiv.org/abs/1410.7390 (arXiv.org)

Kontakt:

Dr. Thushara Pillai,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49-228-525-153
E-mail: tpillai@mpifr-bonn.mpg.de

Prof. Dr. Karl M. Menten,
Direktor und Leiter der Forschungsabteilung “Millimeter- und Submillimeterastronomie”
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: 0228-525-279
E-mail: kmenten@mpifr-bonn.mpg.de

Dr. Norbert Junkes
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressemeldungen/2015/1

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics