Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmischer Ziegel und Himmlische Schlange - Magnetfelder in dunklen Staubwolken

16.01.2015

Magnetfelder von massereichen dunklen Staubwolken im Kosmos sind stark genug, um zu verhindern, dass diese Wolken durch ihre eigene Schwerkraft kollabieren. Eine Untersuchung unter Leitung von Wissenschaftlern des Bonner Max-Planck-Instituts für Radioastronomie in Bonn konnte zum ersten Mal zeigen, dass die starke Magnetisierung den Weg bereitet für die Entstehung von Sternen mit wesentlich größerer Masse als der der Sonne. Ermöglicht wurde dies durch Beobachtungen der polarisierten Staubstrahlung von zwei der massereichsten Dunkelwolken in unserer Milchstraße, dem so genannten "Brick" (Ziegelstein) und der "Snake" (Schlange).

Die massereichen Sterne im Universum (mit mehr als achtfacher Sonnenmasse) sind durch ein wildes Leben und einen frühen Tod gekennzeichnet. Sie blasen starke Sternwinde ab und enden in gewaltigen Explosionen als Supernovae. Sogar die Geburt dieser Sterne ist ein spektakulärer Prozess: die massereichen Sterne entstehen aus sehr dichten und massereichen Kernen von Gas, die sich tief im Inneren von dunklen interstellaren Wolken aus Gas und Staub befinden.


Kosmische Dunkelwolke "Brick" (Ziegelstein) in der Nähe des Galaktischen Zentrums.

T. Pillai & J. Kauffmann, auf der Grundlage von GLIMPSE- & MIPSGAL-Bildern vom Spitzer-Satelliten (NASA / JPL–Caltech / Univ. of Wisconsin) und dem Hertz–Empfänger am CSO (J. Dotson)


Kosmische Dunkelwolke "Snake" (Schlange) in ca. 8000 Lichtjahren Entfernung.

T. Pillai & J. Kauffmann, auf der Grundlage von GLIMPSE & MIPSGAL Bildern vom Spitzer-Satelliten (NASA / JPL-Caltech / S. Carey [SSC/Caltech]), sowie SCUPOL-Daten vom JCMT (P. Redman / B. Matthews)

Tatsächlich stellten die hohen Werte für die Masse solcher Gaskerne die Forscher schon eine ganze Weile vor ein Rätsel: eigentlich sollten sie sehr schnell aufgrund ihrer eigenen Schwerkraft kollabieren und sich damit selbst zerstören, lange vor der möglichen Entdeckung durch irdische Teleskope.

„Zum ersten Mal werden wir Zeugen, wie Magnetfelder eine massereiche Staubwolke zusammenhalten und stabilisieren, während die Entstehung von massereichen Sternen in der Wolke initiiert wird”, sagt Thushara Pillai vom Bonner Max–Planck–Institut für Radioastronomie (MPIfR), die Erstautorin der Untersuchung. „Die Wolke wäre ohne die Unterstützung des Magnetfelds bereits lange kollabiert“, fügt sie hinzu. „In diesem Fall könnten die Verdichtungen innerhalb der Wolke nie genug Masse anhäufen, um Sterne mit dem Vielfachen der Sonnenmasse zu bilden.“

Es wurde bereits lange vermutet, dass Magnetfelder interstellare Wolken gegen einen Kollaps unterstützen können. Jedoch ist es sehr schwierig, dies direkt durch Beobachtungen zu belegen. Denn Magnetfelder sind schwer fassbar: es ist ausgesprochen schwierig, Rauschen im Empfänger und die schwachen Signale von Magnetfeldern zu unterscheiden.

Jede Himmelsregion muss über eine Reihe von Nächten hinweg beobachtet werden, um schließlich ein signifikantes Signal zu erhalten. Die hier vorgestellte Untersuchung beinhaltet zwei Bereiche am Himmel. Der „Brick“ (Ziegelstein) ist eine Region mit ausgesprochen hoher Dichte, bis weit in mittelinfrarote Wellenlängen hinein ähnlich undurchsichtig wie ihr Namensgeber. Sie ist nur einige Dutzend Lichtjahre entfernt von dem massereichen Schwarzen Loch im Zentrum unserer Milchstraße in etwa 26000 Lichtjahren Entfernung.

Der Spitzname „Snake“ (Schlange) leitet sich hingegen einfach von der Form dieser Dunkelwolke am Himmel ab. Sie ist ca. 12000 Lichtjahre von der Erde entfernt. Das Forschungsteam verwendete Archivdaten von zwei Teleskopen auf dem Mauna Kea (Hawaii, USA) zur Durchführung des Projekts, dem James Clerk Maxwell Telescope und dem Caltech Submillimeter Observatory.

Die Geometrie des Magnetfelds wird durch die Beobachtung von Staubpartikeln bestimmt, die sich anhand der Magnetfeldlinien ausrichten. Die Staubkörner geben polarisierte Radiostrahlung ab, die mit Radioteleskopen beobachtet werden kann. Die Feldlinien werden andauernd gestört von zufälligen Gasbewegungen im Inneren der Wolken.

„Man könnte dabei an den Anschlag einer Gitarrensaite denken“, schlägt Paul Goldsmith vor, ein Mitglied des Forschungsteams vom Jet Propulsion Laboratory am California Institute of Technology in Pasadena (Kalifornien, USA). „Bei einem Saiteninstrument wie zum Beispiel einer Gitarre hält die Spannung der Saite das Ganze gerade. In unseren Wolken geschieht das entsprechend durch die Stärke des Magnetfeldes, das die Feldlinien geradebiegen möchte. Das Ausmaß der Gradlinigkeit der Feldlinien lässt es deshalb zu, die Feldstärke zu bestimmen.“

Eine solche Messung wurde bereits im Jahr 1953 von den beiden berühmten Physikern Chandrasekhar und Fermi vorgeschlagen. Aber erst jetzt sind die Teleskope empfindlich genug geworden, um solche Messungen in Sternentstehungsgebieten der Milchstraße möglich zu machen.

Die vorliegende Untersuchung eröffnet ein neues Kapitel in Forschungsprojekten die in den frühen 1980er Jahren am 100-m-Radioteleskop Effelsberg des MPIfR begannen. Bei den ersten Kartierungen von dichtem Gas im Zentralbereich der Milchstraße wurden bereits ungewöhnlich massereiche Wolken identifiziert, darunter der „Brick“.

Diese Entdeckung führte zu einer Reihe von Folgestudien, wie Ko-Autor Jens Kauffmann vom MPIfR erläutert: „Vor zwei Jahren konnten wir zum ersten Mal die innere Struktur des „Bricks“ analysieren. Wir waren sehr überrascht, dass es nur wenige Unterstrukturen darin gab. Irgendetwas schien das Gas am Zusammenklumpen zu hindern. Heute wissen wir, dass ein starkes Magnetfeld das bewirken könnte.“

Das Forschungsteam hat bereits mit einem Projekt begonnen, in dem eine große Zahl weiterer massereicher Staubwolken dieser Art untersucht wird. Dafür werden sie in Zukunft das APEX-Teleskop des MPIfR in der chilenischen Atacama-Wüste benutzen. „APEX ist zur Zeit das einzige Teleskop weltweit, das die entsprechenden Empfänger zur Durchführung dieser Messungen hat“, schließt Thushara Pillai. „Für mich ist es aufregend, gerade dieses Teleskop zur Untersuchung unseres kosmischen Vorgartens zu nutzen.“

Das Forschungsteam umfasst Thushara Pillai, Jens Kauffmann and Karl M. Menten (alle MPIfR), sowie Jonathan C. Tan (University of Florida), Paul F. Goldsmith (Jet Propulsion Laboratory, California Institute of Technology), und Sean J. Carey (IPAC, California Institute of Technology).

Originalveröffentlichung:

Magnetic Fields in High-mass Infrared Dark Clouds, T. Pillai, J. Kauffmann, J.C. Tan, P.F. Goldsmith, S.J. Carey, K.M. Menten, 2015, Astrophysical Journal Vol. 799.
http://iopscience.iop.org/0004-637X/799/1
http://de.arxiv.org/abs/1410.7390 (arXiv.org)

Kontakt:

Dr. Thushara Pillai,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49-228-525-153
E-mail: tpillai@mpifr-bonn.mpg.de

Prof. Dr. Karl M. Menten,
Direktor und Leiter der Forschungsabteilung “Millimeter- und Submillimeterastronomie”
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: 0228-525-279
E-mail: kmenten@mpifr-bonn.mpg.de

Dr. Norbert Junkes
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressemeldungen/2015/1

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie