Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Jets von jungen Sternen formen sich durch Magnetfelder

17.10.2014

Astrophysikalische Jets gehören zu den spektakulärsten Phänomenen des Universums: Aus dem Zentrum von Schwarzen Löchern, Quasaren oder Protosternen schießen diese Materie-Strahlen mitunter mehrere Lichtjahre weit ins All.

Ein neues Modell, das erklärt, wie Magnetfelder solche Ausstöße in jungen Sternen formen, wurde nun erstmals erfolgreich von einem internationalen Forscherteam im Labor getestet.


Künstlerische Darstellung der Geburt eines Sternes: Vertikale, helle Jets werden aus dem Zentrum der Gaswolke ausgestoßen, die ein massiver Baby-Stern um sich angesammelt hat.

ESO/L. Calada

Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren an der Untersuchung beteiligt, deren Resultate jetzt in der Fachzeitschrift Science veröffentlicht wurden. Die dabei gewonnen Erkenntnisse könnten in Zukunft sogar bei der Krebstherapie mit Protonenstrahlen weiterhelfen.

Wann immer ein Objekt im Weltall um sich herum eine rotierende Scheibe aus Materie bildet, stehen die Chancen gut, einen „Jet“ zu beobachten. Dabei handelt es sich um einen dünnen, geradlinigen Ausstoß von Materie, der sich vom Zentrum der Scheibe ausbreitet und dem Gebilde insgesamt die Form eines Kreisels gibt. Insbesondere bei der Entstehung von Sternen kann man derartige Strukturen beobachten, doch bislang ist nicht geklärt, wie genau sich die dünnen Strahlen inmitten der Scheibe formen.

Zusammen mit Kollegen aus Europa, Amerika und Asien haben HZDR-Forscher den Prozess im Labor nachgestellt: Eine Probe aus Kunststoff wurde hierzu am Labor für die Anwendung intensiver Laserstrahlen (Laboratoire pour l'Utilisation des Lasers Intenses – LULI) in Frankreich mit einem Laser beschossen.

Dadurch gerieten die Elektronen im Inneren des „Targets“ in Bewegung und das zuvor feste Kunststoff-Objekt verwandelte sich zum leitfähigen Plasma. „Man muss sich darunter eine Art ‚heiße Wolke‘ aus Elektronen und Ionen vorstellen, die sich sehr schnell ausbreitet. In kleinem Maßstab repräsentiert das Plasma die Materieansammlung eines jungen Sterns“, erläutert Professor Thomas Cowan, Co-Autor der Studie und Direktor des Instituts für Strahlenphysik am HZDR.

Junge Sterne im Miniaturformat für das Labor

Zugleich – und das war ein entscheidender Kniff des Experiments – wurde das Plasma einem sehr starken, gepulsten Magnetfeld ausgesetzt. Die Hypothese der Physiker: Unter Einfluss des Magnetfelds fokussiert sich das normalweise breit gestreute Plasma und bildet eine Aushöhlung im Inneren. Dies führt schließlich zu einer Stoßwelle, aus der ein sehr dünner Strahl hervorgeht – ein Jet.

Das Experiment wurde so konstruiert, dass es auf die real im Universum anzutreffenden Bedingungen hochgerechnet werden kann: In nur 20 Nanosekunden – über 100.000 Mal schneller als der Flügelschlag einer Fliege – bildet das Labor-Plasma Strukturen aus, wie der Jet eines jungen Sterns in rund sechs Jahren.

Auf diese Weise konnte das Modell mit den astronomischen Beobachtungen überprüft werden, die seit einigen Jahren durch Weltraumteleskope möglich sind. Dabei zeigte sich eine sehr genaue Übereinstimmung der Daten. So kommt es beispielsweise in einem Jet dazu, dass sich Teilchenströme überkreuzen, was zu einer zusätzlichen Erhitzung an solchen Punkten führt. „Röntgenmessungen von echten Jets zeigen an den gleichen Stellen Auffälligkeiten wie unser maßstabsgetreues Plasma-Modell im Labor“, verdeutlicht Cowan.

Damit konnten die Forscher erstmals ein Modell vorlegen, das die Entstehung von Jets allein durch Magnetfelder erklären kann. In vorherigen Ansätzen musste stets auch die Rotation der Materie um den jungen Stern als weiterer Einflussfaktor einbezogen werden.

Die Erkenntnis, dass sich ein Plasma derart fokussieren lässt, könnte zudem auch einen praktischen Nutzen für die Medizin haben. So sei es laut Cowan denkbar, dass mit Hilfe von gepulsten Magnetfeldern ein besonders dünner Protonenstrahl für die Strahlentherapie erzeugt werden könnte. Florian Kroll, HZDR-Doktorand und Co-Autor der Studie, erforscht genau dieses Thema.

Spezieller Pulsgenerator vom Hochfeld-Magnetlabor Dresden entworfen

Um überhaupt starke gepulste Magnetfelder für das Experiment produzieren zu können, wurde auf die Erfahrung des Hochfeld-Magnetlabors Dresden am HZDR zurückgegriffen: „Wir haben einen speziellen Pulsgenerator entwickelt, der es den Kollegen in Frankreich ermöglichte, in engen Laborräumlichkeiten so starke Felder zu produzieren“, sagt Dr. Thomas Herrmannsdörfer, Abteilungsleiter am Hochfeld-Magnetlabor. Gerade mal so groß wie ein Kleiderschrank ist der Generator, der Ströme bis zu 300 Kiloampere produzieren kann.

Die Konstruktion einer so kompakten Anlage war laut Herrmannsdörfer vor allem eine technische Herausforderung: „Unsere Elektroingenieure fanden hier recht innovative Lösungen. Das hilft uns nun auch bei der Entwicklung von Generatoren für industrielle und medizintechnische Anwendungen weiter.“ Der Pulsgenerator befindet sich derzeit noch immer im französischen Laserlabor in Palaiseau bei Paris, denn schon ab Dezember wollen die Dresdner Wissenschaftler wieder mit den Kollegen am LULI zusammenarbeiten.

Publikation: B. Albertazzi u.a. (2014). Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science (online ab 17. Oktober 2014).

DOI: 10.1126/science.1259694

Weitere Informationen:
Prof. Dr. Thomas E. Cowan | Institut für Strahlenphysik am HZDR
Tel. +49 351 260 - 2270 | E-Mail: t.cowan@hzdr.de
Dr. Thomas Herrmannsdörfer | Hochfeld-Magnetlabor Dresden am HZDR
Tel. +49 351 260 - 3320 | E-Mail: t.herrmannsdoerfer@hzdr.de

Medienkontakt:
Christine Bohnet | Pressesprecherin
Tel. +49 351 260 2450 | Mobil: +49 160 969 288 56 | c.bohnet@hzdr.de | http://www.hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie:

• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de

Dr. Christine Bohnet | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Nanoinjektion steigert Überlebensrate von Zellen
22.02.2017 | Universität Bielefeld

nachricht Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung
21.02.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Internationale Fachkonferenz „InnoTesting“ am 23. und 24. Februar 2017 in Wildau

22.02.2017 | Veranstaltungen

Wunderwelt der Mikroben

22.02.2017 | Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ursache für eine erbliche Muskelerkrankung entdeckt

22.02.2017 | Medizin Gesundheit

Möglicher Zell-Therapieansatz gegen Zytomegalie

22.02.2017 | Biowissenschaften Chemie

Meeresforschung in Echtzeit verfolgen

22.02.2017 | Geowissenschaften