Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Gläser für die Weltraumforschung

04.01.2016

Wie bildeten sich aus Gesteinspartikeln Asteroiden und Planeten? Dieser Frage gehen Wissenschaftler der Universitäten Münster und Braunschweig in einem Experiment nach. Fraunhofer-Forscher haben für den Versuch Kugeln aus einem Spezialglas entwickelt. Sie bilden die Zusammensetzung der Gesteinspartikel möglichst naturgetreu in kleinem Maßstab ab.

4,57 Milliarden Jahre ist die Erde alt – eine unvorstellbare zeitliche Dimension. Um nachzuvollziehen, wie der blaue Planet einst entstanden ist, analysieren Wissenschaftler heute andere Körper unseres Sonnensystems wie etwa Bruchstücke von Asteroiden, die nach Kollisionen im All als Meteorite auf der Erde eingeschlagen sind.


© Foto Fraunhofer ISC

Der Blick von oben in den Ofeninnenraum zeigt vom Fraunhofer ISC hergestellte Glaskügelchen, die für Experimente zur Weltraumforschung eingesetzt werden.

Nach heutigem Wissensstand haben sich viele planetare Körper durch den Zusammenschluss von Chondren – das sind etwa 0,1 bis 3 mm große Silicatkügelchen – gebildet. Doch wie läuft dieser kosmische Gesteinsbildungsprozess ab?

Das untersuchen Wissenschaftler des Instituts für Planetologie der Westfälischen Wilhelms-Universität in Münster und der Technischen Universität Braunschweig derzeit in Experimenten. Unterstützt werden sie dabei von Forschern des Fraunhofer-Instituts für Silicatforschung ISC in Würzburg. Die Wissenschaftler haben für das Projekt ein Spezialglas entwickelt und daraus winzige Kügelchen geformt, um die Chondren möglichst realistisch abzubilden.

Spezielles Schmelz- und Kristallisationsverhalten

Bisherige Erkenntnisse deuten darauf hin, dass die ursprünglichen Teilchen die Konsistenz von heißem, flüssigem Glas hatten, bevor sie zu größeren Gesteinskonglomeraten aggregierten, abkühlten und auskristallisierten. »Dieses Glas unterscheidet sich von der Materialzusammensetzung stark von technischen Gläsern, mit denen wir üblicherweise arbeiten«, erklärt Dr. Martin Kilo, Abteilungsleiter »Glas« am ISC.

Die Zusammensetzung bedingt jedoch physikalische Eigenschaften wie etwa das Schmelz- und Kristallisationsverhalten. Beides spielt eine zentrale Rolle beim Entstehungsprozess größerer Gesteinskörper.

»Wir haben daher vorab mit Modellierungsprogrammen berechnet, welche Schmelzbedingungen bei den geforderten Zusammensetzungen herrschen, wie stabil die Glasteilchen sind und bei welchen Temperaturen sie in welcher Form kristallisieren«, so Kilo. Eine weitere Herausforderung bestand darin, den Glasteilchen ihre Kugelform zu geben. Dazu nutzen die Experten zwei unterschiedliche Verfahren.

Im ersten Ansatz wird grober Glaskies hergestellt, in die passende Größe gesiebt und anschließend durch thermische Behandlung abgerundet. Die zweite Lösung besteht darin, Glasplatten in kleine Quader zu sägen und mechanisch zu schleifen – ähnlich wie bei der Murmelherstellung.

Für das Experiment haben die Würzburger mehrere Varianten ihrer Kügelchen hergestellt, die sich in ihrer Materialzusammensetzung geringfügig unterscheiden. Diese Kugeln wurden zunächst in speziellen Schmelzaggregaten erhitzt, bei denen sich die Temperatur und Atmosphäre exakt einstellen lassen. Diejenigen Kugeln, die nach diesen Testschmelzen den Eigenschaften aus dem theoretischen Modell am nächsten kamen, wurden für das Projekt ausgewählt.

Experimente im Fallturm

Das Forschungsteam der Universitäten Münster und Braunschweig setzt die kosmischen Glaskügelchen aus dem ISC nun bei Experimenten am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen ein: Der dort betriebene Fallturm umschließt eine 120 Meter hohe stählerne Fallröhre, in welcher ein Hochvakuum erzeugt wird. Mittels eines Katapultsystems werden die Glaskügelchen in einer Kapsel bis zur Spitze der Fallröhre geschossen. Auf diese Weise erreicht man ca. 9,5 Sekunden Schwerelosigkeit – also Bedingungen wie im All. Die Glaskügelchen werden in dieser Zeit auf bis zu 1100°C erhitzt.

Während des Fallvorgangs kollidieren die Kugeln und bilden Cluster. Die Experten zeichnen das Kollisionsverhalten mit Hochgeschwindigkeitskameras auf, die Kollegen an der TU Braunschweig werten es aus. »Unsere Münsteraner Kollegen untersuchen dann, wie die Kugeln zusammenwachsen, ob die Cluster aus einer homogenen Masse bestehen oder ob die Form der einzelnen Kugeln noch erkennbar ist und ob und inwieweit es zur Auskristallisierung kommt«, erläutert Kilo. Im nächsten Schritt wollen die Planetologen dann die Ergebnisse mit Beobachtungen an Meteoriten vergleichen und Rückschlüsse auf die Gültigkeit ihrer theoretischen Modelle ziehen.

Kontakt
Lena Hirnickel

Marketing und Kommunikation / Pressearbeit

Fraunhofer-Institut für Silicatforschung ISC
Neunerplatz 2
97082 Würzburg

Telefon +49(0)9 31/41 00-599

E-Mail senden

Lena Hirnickel | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2016/januar/kosmische-glaeser-fuer-die-weltraumforschung.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics